Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 14(1): 2013594, 2022.
Article in English | MEDLINE | ID: mdl-35000569

ABSTRACT

The ongoing SARS-CoV-2 coronavirus pandemic of 2020-2021 underscores the need for manufacturing platforms that can rapidly produce monoclonal antibody (mAb) therapies. As reported here, a platform based on Nicotiana benthamiana produced mAb therapeutics with high batch-to-batch reproducibility and flexibility, enabling production of 19 different mAbs of sufficient purity and safety for clinical application(s). With a single manufacturing run, impurities were effectively removed for a representative mAb product (the ZMapp component c4G7). Our results show for the first time the reproducibility of the platform for production of multiple batches of clinical-grade mAb, manufactured under current Good Manufacturing Practices, from Nicotiana benthamiana. The flexibility of the system was confirmed by the results of release testing of 19 different mAbs generated with the platform. The process from plant infection to product can be completed within 10 days. Therefore, with a constant supply of plants, response to the outbreak of an infectious disease could be initiated within a matter of weeks. Thus, these data demonstrated that this platform represents a reproducible, flexible system for rapid production of mAb therapeutics to support clinical development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19/immunology , Nicotiana , Plants, Genetically Modified , SARS-CoV-2/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Humans , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Nicotiana/chemistry , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/immunology , COVID-19 Drug Treatment
2.
Radiother Oncol ; 81(2): 196-205, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17069914

ABSTRACT

PURPOSE: Since oxidative injury is implicated in radiation-induced tissue damage to the lung, we studied systemically administered polyethylene glycol (PEGylated) antioxidant enzymes (AOEs) as pulmonary radioprotectors in mice. METHODS AND MATERIALS: C57/bl6 Mice received 13.5 Gy single-dose irradiation to the thorax. One cohort also received 100 microg of a 1:1 mixture of PEG-AOEs {PEG-catalase and PEG-superoxide dismutase (SOD)} intravenously, pre-irradiation and subgroups were evaluated at variable time-points for inflammation and fibrosis. Potential for AOE tumor protection was studied by thoracic irradiation of mice with Lewis lung carcinoma. RESULTS: At 48 h post-irradiation, control irradiated mice had marked elevations of tissue p21, Bax and TGF-beta1 in lungs, not seen in irradiated, PEG-AOE-treated mice. TUNEL staining of lung sections was performed at just one time-point (24 h post-irradiation) and revealed a decrease in apoptotic cells with AOE treatment. At four months post-irradiation, these mice had significantly increased pulmonary fibrosis as measured by hydroxyproline content. Mice treated with PEG-AOE prior to irradiation had 4-month hydroxyproline levels that were similar to that of unirradiated controls (p = 0.28). This corresponded to less pulmonary fibrosis as visualized histologically when compared with mice irradiated without AOEs. PEG-AOEs did not prevent post-irradiation pulmonary inflammation or lung cancer response to irradiation. CONCLUSIONS: A mixture of PEG-SOD and PEG-CAT successfully diminished radiation pulmonary fibrosis in mice. There was also a corresponding effect on several early biomarkers of lung injury and decreased apoptosis. There were no significant effects on acute pneumonitis or tumor protection.


Subject(s)
Catalase/therapeutic use , Polyethylene Glycols/therapeutic use , Pulmonary Fibrosis/prevention & control , Radiation Pneumonitis/prevention & control , Radiation-Protective Agents/therapeutic use , Superoxide Dismutase/therapeutic use , Animals , Biomarkers/analysis , Drug Combinations , Female , Lung/chemistry , Lung/pathology , Lung/radiation effects , Lung Neoplasms/prevention & control , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Pulmonary Fibrosis/pathology , RNA, Messenger/analysis , Radiation Pneumonitis/pathology , Thorax/radiation effects , Transforming Growth Factor beta1/genetics , X-Rays , bcl-2-Associated X Protein/genetics , p21-Activated Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...