Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Pain ; 6: 100037, 2019.
Article in English | MEDLINE | ID: mdl-31650090

ABSTRACT

AMP-activated protein kinase (AMPK) is an energy-sensing kinase that has emerged as a novel therapeutic target for pain due to its ability to inhibit mechanistic target of rapamycin (mTOR) and mitogen activated protein kinase (MAPK) signaling, two signaling pathways that are linked to pain promotion after injury as well as the development of hyperalgesic priming. MAPK and mTOR signaling are also implicated in chemotherapy induced peripheral neuropathy (CIPN). We conducted a series of experiments to gain further insight into how AMPK activators might best be used to treat pain in both sexes in the setting of CIPN from paclitaxel. We also assessed whether hyperalgesic priming emerges from paclitaxel treatment and if this can be prevented by AMPK targeting. AMPK can be pharmacologically activated indirectly through regulation of upstream kinases like liver kinase B1 (LKB1) or directly using positive allosteric modulators. We used the indirect AMPK activators metformin and narciclasine, both of which have been shown to reduce pain in preclinical models but with much different potencies and different efficacies depending on the sex of the animal. We used the direct AMPK activator MK8722 because it is the most potent and specific such activator described to date. Here, the AMPK activators were used in 2 different treatment paradigms. First the drugs were given concurrently with paclitaxel to test whether they prevent mechanical hypersensitivity. Second the AMPK activators were given after the completion of paclitaxel treatment to test whether they reverse established mechanical hypersensitivity. Consistent with our previously published findings with metformin, narciclasine (1 mg/kg) produced an anti-hyperalgesic effect, preventing paclitaxel-induced neuropathy in outbred mice of both sexes. In contrast to metformin, narciclasine also reversed mechanical hypersensitivity in established CIPN. Both metformin (200 mg/kg) and narciclasine prevented the development of hyperalgesic priming induced by paclitaxel treatment. MK8722 (30 mg/kg) had no effect on mechanical hypersensitivity caused by paclitaxel in either the prevention or reversal treatment paradigms. However, MK8722 did attenuate hyperalgesic priming in male and female mice. We conclude that paclitaxel induces robust hyperalgesic priming that is prevented by AMPK targeting and that narciclasine is a particularly attractive candidate for further development as a CIPN treatment.

2.
J Pharmacol Exp Ther ; 371(1): 138-150, 2019 10.
Article in English | MEDLINE | ID: mdl-31324647

ABSTRACT

AMP-activated protein kinase (AMPK) is a multifunctional kinase that negatively regulates the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling, two signaling pathways linked to pain promotion after injury, such as surgical incision. AMPK can be activated directly using positive allosteric modulators, as well as indirectly through the upregulation of upstream kinases, such as liver kinase B1 (LKB1), which is a mechanism of action of metformin. Metformin's antihyperalgesic effects occur only in male mice, raising questions about how metformin regulates pain sensitivity. We used metformin and other structurally distinct AMPK activators narciclasine (NCLS), ZLN-024, and MK8722, to treat incision-induced mechanical hypersensitivity and hyperalgesic priming in male and female mice. Metformin was the only AMPK activator to have sex-specific effects. We also found that indirect AMPK activators metformin and NCLS were able to reduce mechanical hypersensitivity and block hyperalgesic priming, whereas direct AMPK activators ZLN-024 and MK8722 only blocked priming. Direct and indirect AMPK activators stimulated AMPK in dorsal root ganglion (DRG) neuron cultures to a similar degree; however, incision decreased phosphorylated AMPK (p-AMPK) in DRG. Because AMPK phosphorylation is required for kinase activity, we interpret our findings as evidence that indirect AMPK activators are more effective for treating pain hypersensitivity after incision because they can drive increased p-AMPK through upstream kinases like LKB1. These findings have important implications for the development of AMPK-targeting therapeutics for pain treatment. SIGNIFICANCE STATEMENT: Nonopioid treatments for postsurgical pain are needed. Our work focused on whether direct or indirect AMP-activated protein kinase (AMPK) activators would show greater efficacy for inhibiting incisional pain, and we also tested for potential sex differences. We conclude that indirect AMPK activators are likely to be more effective as potential therapeutics for postsurgical pain because they inhibit acute pain caused by incision and prevent the long-term neuronal plasticity that is involved in persistent postsurgical pain. Our work points to the natural product narciclasine, an indirect AMPK activator, as an excellent starting point for development of therapeutics.


Subject(s)
Enzyme Activators/pharmacology , Hyperalgesia/metabolism , Metformin/pharmacology , Protein Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Allosteric Regulation , Amaryllidaceae Alkaloids/pharmacology , Animals , Benzimidazoles , Cells, Cultured , Female , Ganglia, Spinal/drug effects , Imidazoles/pharmacology , Male , Mice , Neurons/drug effects , Phenanthridines/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology
3.
Pharmacol Res ; 139: 1-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30391353

ABSTRACT

Metformin is a widely prescribed drug used in the treatment of type II diabetes. While the drug has many mechanisms of action, most of these converge on AMP activated protein kinase (AMPK), which metformin activates. AMPK is a multifunctional kinase that is a negative regulator of mechanistic target of rapamycin (mTOR) and mitogen activated protein kinase (MAPK) signaling. Activation of AMPK decreases the excitability of dorsal root ganglion neurons and AMPK activators are effective in reducing chronic pain in inflammatory, post-surgical and neuropathic rodent models. We have previously shown that metformin leads to an enduring resolution of neuropathic pain in the spared nerve injury (SNI) model in male mice and rats. The precise mechanism underlying this long-lasting effect is not known. We conducted experiments to investigate the effects of metformin on SNI-induced microglial activation, a process implicated in the maintenance of neuropathic pain that has recently been shown to be sexually dimorphic. We find that metformin is effective at inhibiting development of neuropathic pain when treatment is given around the time of injury and that metformin is likewise effective at reversing neuropathic mechanical hypersensitivity when treatment is initiation weeks after injury. This effect is linked to decreased Iba-1 staining in the dorsal horn, a marker of microglial activation. Importantly, these positive behavioral and microglia effects of metformin were only observed in male mice. We conclude that the neuropathic pain modifying effects of metformin are sex-specific supporting a differential role for microglial activation in male and female mice.


Subject(s)
Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Microglia/drug effects , Neuralgia/drug therapy , Peripheral Nerve Injuries/drug therapy , Sex Characteristics , Spinal Cord/drug effects , Animals , Cold Temperature , Female , Ganglia, Spinal/drug effects , Hyperalgesia/drug therapy , Male , Mice, Inbred ICR , Microglia/physiology , Physical Stimulation , Spinal Cord/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...