Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37559127

ABSTRACT

BACKGROUND: Consumer preferences for boiled or fried pieces of roots, tubers and bananas (RTBs) are mainly related to their texture. Different raw and cooked RTBs were physiochemically characterized to determine the effect of biochemical components on their cooking properties. RESULTS: Firmness in boiled sweetpotato increases with sugar and amylose contents but no significant correlation was observed between other physicochemical characteristics and cooking behaviour. Hardness of boiled yam can be predicted by dry matter (DM) and galacturonic acid (GalA) levels. For cassava, no significant correlation was found between textural properties of boiled roots and DM, but amylose and Ca2+ content were correlated with firmness, negatively and positively, respectively. Water absorption of cassava root pieces boiled in calcium chloride solutions was much lower, providing indirect evidence that pectins are involved in determining cooking quality. A highly positive correlation between textural attributes and DM was observed for fried plantain, but no significant correlation was found with GalA, although frying slightly reduced GalA. CONCLUSION: The effect of main components on texture after cooking differs for the various RTBs. The effect of global DM and major components (i.e. starch, amylose) is prominent for yam, plantain and sweetpotato. Pectins also play an important role on the texture of boiled yam and play a prominent role for cassava through interaction with Ca2+ . © 2023 Bill and Melinda Gates Foundation. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Nat Prod Res ; 37(6): 996-1001, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35815672

ABSTRACT

Honey is known to have antimicrobial, immunomodulatory and wound healing properties. The biological properties of honey have been attributed to phytochemicals derived from their source plants and research has focused on identifying the bioactive phytochemicals with therapeutic potential. In this study, we determined the ability of 5 honeys from Kazakhstan and manuka honey to stimulate TNF-α and TGF-ß production by human keratinocytes. TNF-α and TGF-ß levels increased over time in honey treated and untreated keratinocytes, whereas cells treated with sugar solutions that matched those of the honeys had reduced levels of both cytokines. This suggests that the non-sugar phytochemical components of the honeys may have prevented this decrease. Analysis by LC-MS confirmed that the honeys contained a diverse range of phytochemicals. Some phytochemicals e.g. pinobanksin and vanillin were present at different levels across the honey types, whereas other components, e.g. dicarboxylic acids and their glycosides, were abundant in all honeys.


Subject(s)
Honey , Humans , Honey/analysis , Tumor Necrosis Factor-alpha , Kazakhstan , Phytochemicals/pharmacology , Transforming Growth Factor beta
3.
Int J Food Sci Nutr ; 74(1): 33-50, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36450698

ABSTRACT

Disruption of microvascular architecture is a common pathogenic mechanism in the progression of Alzheimer's disease (AD). Given the anti-angiogenic activity of berry (poly)phenols, we investigated whether long-term feeding of Rubus idaeus (raspberries) could ameliorate cerebral microvascular pathology and improve cognition in the APP/PS-1 mouse model of AD. Male C57Bl/6J mice (50 wild type, 50 APP/PS-1) aged 4-months were fed for 24-weeks, with a normal diet enriched with either 100 mg/day glucose (control diet) or supplemented with glucose and freeze-dried anthocyanin-rich (red) or -poor (yellow) raspberries (100 mg/day) and assessed/sampled post intervention. Cerebral microvascular architecture of wild-type mice was characterised by regularly spaced capillaries with uniform diameters, unlike APP/PS-1 transgenic mice which showed dysregulated microvascular architecture. Long-term feeding of raspberries demonstrated limited modulation of microbiota and no substantive effect on microvascular architecture or cognition in either mice model although changes were evident in endogenous cerebral and plasmatic metabolites.


Subject(s)
Alzheimer Disease , Rubus , Male , Mice , Animals , Fruit , Anthocyanins , Mice, Transgenic , Dietary Supplements , Cognition
4.
Pharmaceutics ; 14(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631686

ABSTRACT

There is a global need to discover effective anti-cancerous compounds from natural sources. Cultivated wheat cells can be a valuable source of non-toxic or low toxic plant-derived polysaccharides. In this study, we evaluated the anti-cancer ability of seven fractions of wheat cell culture polysaccharides (WCCPSs) in the HCT-116 colon cancer cell line. Almost all (6/7) fractions had an inhibitory effect on the proliferation of colon cancer cells, and two fractions (A-b and A-f) had considerable therapeutic indexes. The WCCPS fractions induced cell cycle arrest in the G1 phase and induced different rates of apoptosis (≤48%). Transmission and scanning electron microscopy revealed that WCCPS fractions caused apoptotic changes in the nucleus and cytoplasm, including damage to mitochondria and external morphological signs of apoptosis. In addition, the WCCPSs induced an increase in the levels of Bax, cytochrome c, and caspases 8 and 3, indicating that cell death progressed through intrinsic and extrinsic pathways of apoptosis. Furthermore, some fractions caused a significant decrease of c-Myc, b-catenin, NFkB2, and HCAM (CD 44) levels, indicating enhanced cell differentiation. Thus, for the first time, our results provide a proof of concept of the anti-cancer capacity of WCCPS fractions in colorectal cancer.

5.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35409309

ABSTRACT

European black elderberry (Sambucus nigra L.) is a popular way to treat common colds or influenza infections. Mechanistically, this might be due to a direct antiviral effect or a stimulatory effect on the immune system of the host. Here, we evaluated the modulatory effects of black elderberry derived water extract (EC15) and its polysaccharide enriched fractions (CPS, BOUND, and UNBOUND) in comparison to a conventional alcoholic extract (EE25), regarding the phenotypical and functional properties of dendritic cells (DCs), which are essential cells to induce potent T cell responses. Interestingly, the water extract and its polysaccharide fractions potently induced DC maturation, while the ethanol extract did not. Moreover, the capacity to stimulate T cells by these matured DCs, as assessed using MLR assays, was statistically higher when induced by the water extracted fractions, compared to immature DCs. On the other hand, the ethanol extract EE25 did not induce T cell stimulation. Finally, the cytokine expression profiles of these DC-T cell cocultures were assessed and correlated well with increased T cell stimulation. Also, the expression of inflammatory cytokines, such as IL-6, TNF-α, and IFN-γ was highly increased in the presence of the elderberry water extract EC15, and the polysaccharide enriched CPS, BOUND, and UNBOUND fractions, but not by EE25. Thus, from these data, we conclude that the polysaccharides present in water-derived elderberry fractions induce potent immune-modulatory effects, which represents the basis for a strong immune-mediated response to viruses including influenza.


Subject(s)
Influenza, Human , Sambucus nigra , Sambucus , Cytokines/metabolism , Dendritic Cells , Ethanol/pharmacology , Humans , Immunity , Influenza, Human/metabolism , Plant Extracts , Polysaccharides/metabolism , Polysaccharides/pharmacology , T-Lymphocytes , Water/metabolism
6.
BMC Complement Med Ther ; 21(1): 300, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930218

ABSTRACT

BACKGROUND: Antimicrobial drug resistance is a major public health threat that can render infections including wound and skin infections untreatable. The discovery of new antimicrobials is critical. Approaches to discover novel antimicrobial therapies have included investigating the antimicrobial activity of natural sources such as honey. In this study, the anti-microbial activity and chemical composition of 12 honeys from Kazakhstan and medical grade manuka honey were investigated. METHODS: Agar well diffusion and broth culture assays were used to determine anti-microbial activity against a range of skin and wound infecting micro-organisms. Folin-Ciocalteu method was used to determine the total phenol content of the honeys and non-targeted liquid chromatography analysis was performed to identify components that correlated with antimicrobial activity. RESULTS: In the well diffusion assay, the most susceptible micro-organisms were a clinical isolate of Methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis (ATCC 19433). Buckwheat & multi-floral honey from Kazakhstan demonstrated the highest antimicrobial activity against these two micro-organisms. Kazakhstan honeys with a buckwheat floral source, and manuka honey had the highest total phenol content. Non-targeted liquid chromatography analysis identified components that correlated with anti-microbial activity as hydroxyphenyl acetic acid, p-coumaric acid, (1H)-quinolinone, and abscisic acid. CONCLUSIONS: The Kazakhstan honeys selected in this study demonstrated antimicrobial activity against wound and skin infecting micro-organisms. Compounds identified as correlating with antimicrobial activity could be considered as potential bioactive agents for the treatment of wound and skin infections.


Subject(s)
Anti-Infective Agents/pharmacology , Enterococcus faecalis/drug effects , Honey/analysis , Methicillin-Resistant Staphylococcus aureus/drug effects , Phytochemicals/pharmacology , Polyphenols/pharmacology , Acinetobacter baumannii/drug effects , Anti-Infective Agents/chemistry , Escherichia coli/drug effects , Humans , Kazakhstan , Malassezia/drug effects , Microbial Sensitivity Tests , Phytochemicals/chemistry , Polyphenols/chemistry , Pseudomonas aeruginosa/drug effects , Skin Diseases, Bacterial/microbiology , Wound Infection/microbiology
7.
PLoS One ; 16(2): e0247329, 2021.
Article in English | MEDLINE | ID: mdl-33617581

ABSTRACT

In this work, a new magnetic ligand fishing probe for discovery of DPP-IV inhibitory ligands was developed and it was tested as a proof of concept on the fruit extract of Vaccinium vitis-idaea (lingonberry). The ligands were shown to have appreciable dipeptidyl peptidase IV (DPP-IV) inhibitory activity (IC50: 31.8 µg mL-1).) Inhibition of DPP-IV is a well-known therapeutic approach for management of type 2 diabetes (T2D). DPP-IV was successfully immobilized onto magnetic beads and was shown to retain its catalytic activity and selectivity over a model mixture. A total of four ligands were successfully fished out and identified as cyanidin-3-galactoside (2), cyanidin-3-arabinoside (3), proanthocynidin A (4), and 10-carboxyl-pyranopeonidin 3-O-(6″-O-p-coumaroyl)-glucoside (5) using HPLC/HRMS.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Vaccinium vitis-idaea/chemistry , Animals , Anthocyanins/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Galactosides/pharmacology , Glucosides/pharmacology , Humans , Ligands , Magnetic Phenomena , Magnetics/methods , Swine
8.
Redox Biol ; 40: 101862, 2021 04.
Article in English | MEDLINE | ID: mdl-33486151

ABSTRACT

Diets rich in fruit and vegetables are associated with a decreased incidence of colorectal cancer (CRC) due, in part, to the bioactive (poly)phenolic components and their microbiota-mediated metabolites. This study investigated how such compounds, derived from ingested raspberries in the gastrointestinal tract, may exert protective effects by reducing DNA damage. Ileal fluids collected pre- and post-consumption of 300 g of raspberries by ileostomists (n = 11) were subjected to 24 h ex vivo fermentation with fecal inoculum to simulate interaction with colonic microbiota. The impact of fermentation on (poly)phenolics in ileal fluid was determined and the bioactivity of ileal fluids pre- and post fermentation investigated. (Poly)phenolic compounds including sanguiin H-6, sanguiin H-10 and cyanidin-3-O-sophoroside decreased significantly during fermentation while, in contrast, microbial catabolites, including 3-(3'-hydroxyphenyl)propanoic acid, 3-hydroxybenzoic acid and benzoic acid increased significantly. The post-raspberry ileal fermentate from 9 of the 11 ileostomates significantly decreased DNA damage (~30%) in the CCD 841 CoN normal cell line using an oxidative challenge COMET assay. The raspberry ileal fermentates also modulated gene expression of the nuclear factor 2-antioxidant responsive element (Nrf2-ARE) pathway involved in oxidative stress cytoprotection, namely Nrf2, NAD(P)H dehydrogenase, quinone-1 and heme oxygenase-1. Four of the phenolic catabolites were assessed individually, each significantly reducing DNA damage from an oxidative challenge over a physiologically relevant 10-100 µM range. They also induced a differential pattern of expression of key genes in the Nrf2-ARE pathway in CCD 841 CoN cells. The study indicates that the colon-available raspberry (poly)phenols and their microbial-derived catabolites may play a role in protection against CRC in vivo.


Subject(s)
Rubus , Colon/metabolism , Epithelial Cells , Fermentation , Humans , Phenols
9.
Eur J Nutr ; 60(3): 1263-1276, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32651764

ABSTRACT

PURPOSE: Studies on broccoli (Brassica oleracea var. italica) indicate beneficial effects against a range of chronic diseases, commonly attributed to their bioactive phytochemicals. Sulforaphane, the bioactive form of glucoraphanin, is formed by the action of the indigenous enzyme myrosinase. This study explored the role that digestion and cooking practices play in bioactivity and bioavailability, especially the rarely considered dose delivered to the colon. METHODS: The antimicrobial activity of sulforaphane extracts from raw, cooked broccoli and cooked broccoli plus mustard seeds (as a source myrosinase) was assessed. The persistence of broccoli phytochemicals in the upper gastrointestinal tract was analysed in the ileal fluid of 11 ileostomates fed, in a cross-over design, broccoli soup prepared with and without mustard seeds. RESULTS: The raw broccoli had no antimicrobial activity, except against Bacillus cereus, but cooked broccoli (with and without mustard seeds) showed considerable antimicrobial activity against various tested pathogens. The recovery of sulforaphane in ileal fluids post soup consumption was < 1% but the addition of mustard seeds increased colon-available sulforaphane sixfold. However, when sulforaphane was extracted from the ileal fluid with the highest sulforaphane content and tested against Escherichia coli K12, no inhibitory effects were observed. Analysis of glucosinolates composition in ileal fluids revealed noticeable inter-individual differences, with six "responding" participants showing increases in glucosinolates after broccoli soup consumption. CONCLUSIONS: Sulforaphane-rich broccoli extracts caused potent antimicrobial effects in vitro, and the consumption of sulforaphane-enriched broccoli soup may inhibit bacterial growth in the stomach and upper small intestine, but not in the terminal ileum or the colon.


Subject(s)
Anti-Infective Agents , Brassica , Cooking , Cross-Over Studies , Glucosinolates , Humans , Isothiocyanates , Oximes , Plant Extracts/pharmacology , Sulfoxides
10.
Nutrients ; 12(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228214

ABSTRACT

Cichorium intybus L. has recently gained major attention due to large quantities of health-promoting compounds in its roots, such as inulin and sesquiterpene lactones (SLs). Chicory is the main dietary source of SLs, which have underexplored bioactive potential. In this study, we assessed the capacity of SLs to permeate the intestinal barrier to become physiologically available, using in silico predictions and in vitro studies with the well-established cell model of the human intestinal mucosa (differentiated Caco-2 cells). The potential of SLs to modulate inflammatory responses through modulation of the nuclear factor of activated T-cells (NFAT) pathway was also evaluated, using a yeast reporter system. Lactucopicrin was revealed as the most permeable chicory SL in the intestinal barrier model, but it had low anti-inflammatory potential. The SL with the highest anti-inflammatory potential was 11ß,13-dihydrolactucin, which inhibited up to 54% of Calcineurin-responsive zinc finger (Crz1) activation, concomitantly with the impairment of the nuclear accumulation of Crz1, the yeast orthologue of human NFAT.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cichorium intybus , Intestines/drug effects , Sesquiterpenes/pharmacology , Humans , In Vitro Techniques , Lactones/pharmacology , Permeability
11.
Antioxidants (Basel) ; 9(10)2020 10 10.
Article in English | MEDLINE | ID: mdl-33050384

ABSTRACT

Chronic neuroinflammation associated with neurodegenerative disorders has been reported to be prevented by dietary components. Particularly, dietary (poly)phenols have been identified as having anti-inflammatory and neuroprotective actions, and their ingestion is considered a major preventive factor for such disorders. To assess the relation between (poly)phenol classes and their bioactivity, we used five different raspberry genotypes, which were markedly different in their (poly)phenol profiles within a similar matrix. In addition, gastro-intestinal bio-accessible fractions were produced, which simulate the (poly)phenol metabolites that may be absorbed after digestion, and evaluated for anti-inflammatory potential using LPS-stimulated microglia. Interestingly, the fraction from genotype 2J19 enriched in ellagitannins, their degradation products and ellagic acid, attenuated pro-inflammatory markers and mediators CD40, NO, TNF-α, and intracellular superoxide via NF-κB, MAPK and NFAT pathways. Importantly, it also increased the release of the anti-inflammatory cytokine IL-10. These effects contrasted with fractions richer in anthocyanins, suggesting that ellagitannins and its derivatives are major anti-inflammatory (poly)phenols and promising compounds to alleviate neuroinflammation.

12.
Am J Clin Nutr ; 112(4): 1051-1068, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32936878

ABSTRACT

There is a lack of focus on the protective health effects of phytochemicals in dietary guidelines. Although a number of chemical libraries and databases contain dietary phytochemicals belonging to the plant metabolome, they are not entirely relevant to human health because many constituents are extensively metabolized within the body following ingestion. This is especially apparent for the highly abundant dietary (poly)phenols, for which the situation is compounded by confusion regarding their bioavailability and metabolism, partially because of the variety of nomenclatures and trivial names used to describe compounds arising from microbial catabolism in the gastrointestinal tract. This confusion, which is perpetuated in online chemical/metabolite databases, will hinder future discovery of bioactivities and affect the establishment of future dietary guidelines if steps are not taken to overcome these issues. In order to resolve this situation, a nomenclature system for phenolic catabolites and their human phase II metabolites is proposed in this article and the basis of its format outlined. Previous names used in the literature are cited along with the recommended nomenclature, International Union of Pure and Applied Chemistry terminology, and, where appropriate, Chemical Abstracts Service numbers, InChIKey, and accurate mass.


Subject(s)
Diet , Polyphenols/metabolism , Terminology as Topic , Humans , Isomerism , Polyphenols/administration & dosage
13.
Mar Drugs ; 18(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867333

ABSTRACT

Phenolic components from the edible brown seaweed, Ascophyllum nodosum, have been associated with considerable antioxidant activity but also bioactivities related to human health. This study aims to select and identify the main phlorotannin components from this seaweed which have been previously associated with potential health benefits. Methods to enrich phenolic components then further select phlorotannin components from ethanolic extracts of Ascophyllum nodosum were applied. The composition and phenolic diversity of these extracts were defined using data dependent liquid chromatography mass spectroscopic (LC-MSn) techniques. A series of phlorotannin oligomers with apparent degree of polymerization (DP) from 10 to 31 were enriched by solid phase extraction and could be selected by fractionation on Sephadex LH-20. Evidence was also obtained for the presence of dibenzodioxin linked phlorotannins as well as sulphated phlorotannins and phenolic acids. As well as diversity in molecular size, there was evidence for potential isomers at each DP. MS2 fragmentation analyses strongly suggested that the phlorotannins contained ether linked phloroglucinol units and were most likely fucophlorethols and MS3 data suggested that the isomers may result from branching within the chain. Therefore, application of these LC-MSn techniques provided further information on the structural diversity of the phlorotannins from Ascophyllum, which could be correlated against their reported bioactivities and could be further applied to phlorotannins from different seaweed species.


Subject(s)
Ascophyllum/chemistry , Chromatography, High Pressure Liquid , Phenols/isolation & purification , Spectrometry, Mass, Electrospray Ionization , Tannins/isolation & purification , Molecular Structure , Polymerization , Solid Phase Extraction
14.
Food Chem ; 330: 127227, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32521402

ABSTRACT

A hydroxycinnamate-like component was identified in highbush blueberry (Vaccinium corymbosum) fruit, which had identical UV and mass spectrometric properties to an S-linked glutathionyl conjugate of chlorogenic acid synthesized using a peroxidase-catalyzed reaction. The conjugate was present in fruits from all highbush blueberry genotypes grown in one season, reaching 7-20% of the relative abundance of 5-caffeoylquininc acid. It was enriched, along with anthocyanins, by fractionation on solid phase cation-exchange units. Mining of pre-existing LC-MS data confirmed that this conjugate was ubiquitous in highbush blueberries, but also present in other Vaccinium species. Similar data mining identified this conjugate in potato tubers with enrichment in peel tissues. In addition, the conjugate was also present in commercial apple juice and was stable to pasteurization and storage. Although glutathionyl conjugates of hydroxycinnamic acids have been noted previously, this is the first report of glutathionyl conjugates of chlorogenic acids in commonly-eaten fruits and vegetables.


Subject(s)
Blueberry Plants/chemistry , Chlorogenic Acid/analysis , Fruit and Vegetable Juices/analysis , Malus/chemistry , Solanum tuberosum/chemistry , Anthocyanins/analysis , Fruit/chemistry , Plant Tubers/chemistry
15.
Food Funct ; 11(5): 4026-4037, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32323699

ABSTRACT

Broccoli is rich in glucosinolates, which can be converted upon chewing and processing into Aryl hydrocarbon Receptor (AhR) ligands. Activation of AhR plays an important role in overall gut homeostasis but the role of broccoli processing on the generation of AhR ligands is still largely unknown. In this study, the effects of temperature, cooking method (steaming versus boiling), gastric pH and further digestion of broccoli on AhR activation were investigated in vitro and in ileostomy subjects. For the in vitro study, raw, steamed (t = 3 min and t = 6 min) and boiled (t = 3 min and t = 6 min) broccoli were digested in vitro with different gastric pH. In the in vivo ileostomy study, 8 subjects received a broccoli soup or a broccoli soup plus an exogenous myrosinase source. AhR activation was measured in both in vitro and in vivo samples by using HepG2-Lucia™ AhR reporter cells. Cooking broccoli reduced the AhR activation measured after gastric digestion in vitro, but no effect of gastric pH was found. Indole AhR ligands were not detected or detected at very low levels both after intestinal in vitro digestion and in the ileostomy patient samples, which resulted in no AhR activation. This suggests that the evaluation of the relevance of glucosinolates for AhR modulation in the gut cannot prescind from the way broccoli is processed, and that broccoli consumption does not necessarily produce substantial amounts of AhR ligands in the large intestine.


Subject(s)
Brassica/metabolism , Digestion/physiology , Receptors, Aryl Hydrocarbon/metabolism , Brassica/chemistry , Humans , Hydrogen-Ion Concentration , Ileostomy , Ileum , Indoles/metabolism , Ligands , Receptors, Aryl Hydrocarbon/genetics
16.
Metabolomics ; 16(2): 25, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32030531

ABSTRACT

INTRODUCTION: Commercially, blackcurrants (Ribes nigrum L.) are grown mainly for processing, especially for juice production. They are valued for their high levels of polyphenols, especially anthocyanins, which contribute to their characteristic deep colour, but also as a good source of vitamin C. Recently, evidence has accrued that polyphenols, such as anthocyanins, may have specific human health benefits. OBJECTIVE: The aims of this study were to investigate the genetic control of polyphenols and other key juice processing traits in blackcurrants. METHODS: The levels, over 2 years, of vitamin C, citrate, malate, succinate, total organic acids, total anthocyanins and total phenolics together with 46 mainly polyphenol metabolites were measured in a blackcurrant biparental mapping population. Quantitative trait loci (QTLs) for these traits were mapped onto a high-density SNP linkage map. RESULTS: At least one QTL was detected for each trait, with good consistency between the 2 years. Clusters of QTLs were found on each of the eight linkage groups (LG). For example, QTLs for the major anthocyanidin glucosides, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, co-localised with a QTL for total anthocyanin content on LG3 whereas the major anthocyanidin rutinosides, delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, had QTLs on LG1 and LG2. Many of the QTLs explained a high proportion of the trait variation, with the most significant region, on LG3 at ~ 35 cM, explaining more than 60% of the variation in the coumaroylated metabolites, Cyanidin-coumaroyl-glucose, Delphinidin-coumaroyl-glucose, Kaempferol-coumaroyl-glucose and Myricetin-coumaroyl-glucose. CONCLUSION: The identification of robust QTLs for key polyphenol classes and individual polyphenols in blackcurrant provides great potential for marker-assisted breeding for improved levels of key components.


Subject(s)
Polyphenols/genetics , Polyphenols/metabolism , Quantitative Trait Loci/genetics , Ribes/genetics , Ribes/metabolism , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism
17.
Plant Foods Hum Nutr ; 74(4): 544-552, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31372918

ABSTRACT

Despite considerable research the evidence around the antidiabetic properties of cinnamon remains equivocal, and this may be due to varietal differences which is an aspect that is understudied. This study systematically compared the anti-hyperglycaemic properties of the four major commercial cinnamon types used around the world (Chinese; Cinnamomum cassia [CC], Indonesian; C. burmanii [IC], Vietnamese; C. loureirii [VC], and Ceylon; C. zeylanicum [SC]). LC-MS analysis showed distinct diffrences in the phytochemical profiles of cinnamon with SC showing the lowest coumarin concentration. CC and IC had the highest polyphenol levels and antioxidant potential, and all four types differed significantly in their content (P < 0.001). All cinnamon types showed potent species-specific effects on starch digestion enzyme activity inhibition (P < 0.001), CC was most effective against α-amylase and all four strongly inhibited α-glucosidase compared to acarbose. Cinnamon significantly reduced starch breakdown during oral (P = 0.006) and gastric (P = 0.029) phases of gastro-intestinal digestion with IC and SC showing consistent effects. No effects of cinnamon were seen in the intestinal phase. IC, VC and SC showed the greatest potential to inhibit formation of advanced glycation endproducts (AGEs) during digestion. In conclusion, cinnamon demonstrates anti-hyperglycaemic properties, however effects are species-specific with best overall properties seen for Ceylon cinnamon.


Subject(s)
Cinnamomum aromaticum , Cinnamomum zeylanicum , Hypoglycemic Agents , Plant Extracts , Sri Lanka , Starch
18.
Eur J Nutr ; 58(1): 113-130, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29151137

ABSTRACT

PURPOSE: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS: BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS: Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS: BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.


Subject(s)
Blood-Brain Barrier/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Rubus/metabolism , Animals , Cells, Cultured , Chromatography, Liquid , Humans , In Vitro Techniques , Mass Spectrometry , Mice , Mice, Inbred BALB C , Models, Animal , Neuroprotective Agents/metabolism , Plant Extracts/metabolism , Polymerase Chain Reaction , Polyphenols/metabolism
19.
Sci Rep ; 8(1): 16691, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30420658

ABSTRACT

Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically-relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile-derived metabolites in culture supernatants, including hexanoyl- and pentanoyl-amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300-fold increases in the expression of sporulation-associated genes were observed in FW media-grown cells, along with reductions in motility and toxin genes' expression. Moreover, the expression of classical stress-response genes did not change, showing that C. difficile is well-adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.


Subject(s)
Clostridioides difficile/physiology , Clostridioides difficile/pathogenicity , Adaptation, Physiological/physiology , Bacillus subtilis/metabolism , Bacillus subtilis/pathogenicity , Bacillus subtilis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Liquid , Clostridioides difficile/metabolism , Feces/microbiology , Gene Expression Regulation, Bacterial , Mass Spectrometry , Sequence Analysis, RNA , Spores, Bacterial/metabolism , Spores, Bacterial/pathogenicity , Spores, Bacterial/physiology , Transcriptome/genetics , Virulence
20.
Molecules ; 23(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071616

ABSTRACT

Berry fruits are rich in nutrients and polyphenols, providing potential health benefits. Understanding the factors that affect their bioavailability is becoming of utmost importance for evaluating their biological significance and efficacy as functional food. In this study, the phytochemical composition and the total antioxidant capacity of different varieties of five berries (blackberry, blackcurrant, blueberry, raspberry, and strawberry) were evaluated after an in vitro gastrointestinal digestion process. The cultivar of each berry that showed the higher content of total phenols and flavonoids was selected to study its cytotoxic effect on human hepatoma cells. Digestion resulted in a high reduction (p ˂ 0.05) of total phenolic, flavonoid and anthocyanin contents and total antioxidant capacity, in the "IN" samples compared to the "OUT" extracts, which represent the "serum-available" and the "colon-available" fractions, respectively. Incubation of the digested fraction for 24 h didn't exert any effect on cellular viability, while a dose- and time-dependent cytotoxicity was observed after 48 h and 72 h of incubation for all the berries analyzed. Our results suggest that the approach proposed in this work may represent a rapid tool for evaluating and identifying new berries with increased phytochemical bioavailability, highlighting their antiproliferative agents after an in vitro digestion.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Fruit/chemistry , Liver Neoplasms/metabolism , Blueberry Plants/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Fragaria/chemistry , Humans , Phenols/chemistry , Phenols/pharmacology , Polyphenols/chemistry , Rubus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...