Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 13: 27, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23410187

ABSTRACT

BACKGROUND: Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric. RESULTS: In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications of auxin and ethylene. Thus, these genes may play important roles in defining rhizome growth and development. Additional associations were made for ginger and turmeric rhizome-enriched MADS box transcription factors, their putative rhizome-enriched homologs in sorghum, and rhizomatous QTLs in rice. Additionally, analysis of both primary and specialized metabolism genes indicates that ginger and turmeric rhizomes are primarily devoted to the utilization of leaf supplied sucrose for the production and/or storage of specialized metabolites associated with the phenylpropanoid pathway and putative type III polyketide synthase gene products. This finding reinforces earlier hypotheses predicting roles of this enzyme class in the production of curcuminoids and gingerols. CONCLUSION: A significant set of genes were found to be exclusively or preferentially expressed in the rhizome of ginger and turmeric. Specific transcription factors and other regulatory genes were found that were common to the two species and that are excellent candidates for involvement in rhizome growth, differentiation and development. Large classes of enzymes involved in specialized metabolism were also found to have apparent tissue-specific expression, suggesting that gene expression itself may play an important role in regulating metabolite production in these plants.


Subject(s)
Catechols/metabolism , Curcuma/metabolism , Fatty Alcohols/metabolism , Terpenes/metabolism , Zingiber officinale/metabolism , Curcuma/genetics , Expressed Sequence Tags , Zingiber officinale/genetics
2.
Plant Physiol ; 155(1): 524-39, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21098679

ABSTRACT

Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors.


Subject(s)
Genomics/methods , Plant Epidermis/anatomy & histology , Plant Epidermis/genetics , Solanum/genetics , Chromatography, Liquid , Cluster Analysis , Discriminant Analysis , Least-Squares Analysis , Mass Spectrometry , Metabolome/genetics , Molecular Sequence Data , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Principal Component Analysis , Solanum/metabolism , Species Specificity
3.
BMC Genomics ; 11: 413, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20598146

ABSTRACT

BACKGROUND: The template switching PCR (TS-PCR) method of cDNA synthesis represents one of the most straightforward approaches to generating full length cDNA for sequencing efforts. However, when applied to very small RNA samples, such as those obtained from tens or hundreds of cells, this approach leads to high background and low cDNA yield due to concatamerization of the TS oligo. RESULTS: In this study, we describe the application of nucleotide isomers that form non-standard base pairs in the template switching oligo to prevent background cDNA synthesis. When such bases are added to the 5' end of the template switching (TS) oligo, they inhibit MMLV-RT from extending the cDNA beyond the TS oligo, thus increasing cDNA yield by reducing formation of concatamers of the TS oligo that are the source of significant background. CONCLUSIONS: Our results demonstrate that this novel approach for cDNA synthesis has valuable utility for application of ultra-high throughput technologies, such as whole transcriptome sequencing using 454 technology, to very small biological samples comprised of tens of cells as might be obtained via approaches like laser microdissection.


Subject(s)
DNA, Complementary/biosynthesis , Oligonucleotides/metabolism , Polymerase Chain Reaction/methods , RNA/metabolism , Sequence Analysis, DNA/methods , Base Sequence , DNA, Complementary/genetics , DNA, Complementary/metabolism , Gene Library , Isomerism , Molecular Sequence Data , Moloney murine leukemia virus/enzymology , Oligonucleotides/chemistry , Oligonucleotides/genetics , Plant Cells , Plants/genetics , RNA-Directed DNA Polymerase/metabolism
4.
Virology ; 348(1): 19-34, 2006 Apr 25.
Article in English | MEDLINE | ID: mdl-16455125

ABSTRACT

The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection.


Subject(s)
Cytomegalovirus/physiology , DNA, Viral/metabolism , Tumor Suppressor Protein p53/metabolism , Artificial Gene Fusion , Binding Sites/genetics , Binding Sites/physiology , Cell Line , Chromatin Immunoprecipitation , Fibroblasts/chemistry , Fibroblasts/virology , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Humans , Microscopy, Fluorescence , Protein Binding , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...