Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Transplant ; 30: 9636897211057440, 2021.
Article in English | MEDLINE | ID: mdl-34757864

ABSTRACT

The inflammatory response is an obstacle to success in both allogeneic and autologous islet transplantation. In autologous islet transplantation (AIT), however, the recipient is also the donor, permitting pretreatment of donor/recipient for a controlled duration prior to transplantation. We sought to exploit this feature of (AIT) by pretreating donor/recipients with chronic pancreatitis undergoing total pancreatectomy and autologous islet transplantation (TPAIT) to test the hypothesis that peri-transplant treatment with the FDA-approved anti-inflammatory hydroxychloroquine (HCQ) improves graft function. In this randomized placebo-controlled pilot clinical study, patients (n = 6) were treated with oral HCQ for 30 days prior to and 90 days after TPAIT. In vivo islet function was assessed via Mixed Meal Tolerance Testing before HCQ treatment, 6- and 12-months after surgery. In vitro islet bioenergetics were assessed at the time of transplantation via extracellular flux analysis of islet preparation samples from the clinical trial cohort and six additional patients (n = 12). Our study shows that HCQ did not alter clinical endpoints, but HCQ-treated patients showed greater spare respiratory capacity (SRC) compared to samples from control patients (P=0.028). Glycolytic metabolism of islet preparations directly correlated with stimulated C-peptide secretion both before and after TPAIT (P=0.01, R2=0.489 and P=0.03, R2=0.674, respectively), and predicted in vivo islet function better than mitochondrial metabolism of islet preps or islet equivalents infused. Overnight culture of islet preparations altered bioenergetic function, significantly decreasing SRC and maximal respiration (P<0.001). In conclusion, while HCQ did not alter clinical outcomes, it was associated with significantly increased SRC in islet preparations. Bioenergetic analyses of islet preparations suggests that culture should be avoided and that glycolysis may be a more sensitive indicator of in vivo islet function than current metrics, including islet oxygen consumption and islet equivalents infused.


Subject(s)
Energy Metabolism/immunology , Enzyme Inhibitors/therapeutic use , Hydroxychloroquine/therapeutic use , Islets of Langerhans Transplantation/methods , Transplantation, Autologous/methods , Clinical Trials as Topic , Enzyme Inhibitors/pharmacology , Female , Humans , Hydroxychloroquine/pharmacology , Male , Pilot Projects , Treatment Outcome
2.
Nat Immunol ; 21(10): 1219-1231, 2020 10.
Article in English | MEDLINE | ID: mdl-32778760

ABSTRACT

Chronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high-fat-diet-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced high-fat diet-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that the IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity.


Subject(s)
Adipocytes/immunology , Inflammation/immunology , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1/metabolism , Mitochondrial Membranes/metabolism , Obesity/immunology , Adipocytes/pathology , Animals , Cells, Cultured , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Male , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Oxidative Phosphorylation , Prohibitins , Protein Transport , Receptors, Interleukin-1/metabolism , Signal Transduction
3.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L562-L569, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32022593

ABSTRACT

Group 1 pulmonary hypertension (PH), i.e., pulmonary arterial hypertension (PAH), is associated with a metabolic shift favoring glycolysis in cells comprising the lung vasculature as well as skeletal muscle and right heart. We sought to determine whether this metabolic switch is also detectable in circulating platelets from PAH patients. We used Seahorse Extracellular Flux to measure bioenergetics in platelets isolated from group 1 PH (PAH), group 2 PH, patients with dyspnea and normal pulmonary artery pressures, and healthy controls. We show that platelets from group 1 PH patients exhibit enhanced basal glycolysis and lower glycolytic reserve compared with platelets from healthy controls but do not differ from platelets of group 2 PH or dyspnea patients without PH. Although we were unable to identify a glycolytic phenotype unique to platelets from PAH patients, we found that platelet glycolytic metabolism correlated with hemodynamic severity only in group 1 PH patients, supporting the known link between PAH pathology and altered glycolytic metabolism and extending this association to ex vivo platelets. Pulmonary artery pressure and pulmonary vascular resistance in patients with group 1 PH were directly associated with basal platelet glycolysis and inversely associated with maximal and reserve glycolysis, suggesting that PAH progression reduces the capacity for glycolysis even while demanding an increase in glycolytic metabolism. Therefore, platelets may provide an easy-to-harvest, real-time window into the metabolic shift occurring in the lung vasculature and represent a useful surrogate for interrogating the glycolytic shift central to PAH pathology.


Subject(s)
Blood Platelets/metabolism , Glycolysis , Hemodynamics , Pulmonary Arterial Hypertension/pathology , Aged , Case-Control Studies , Energy Metabolism , Female , Humans , Male , Middle Aged , Pulmonary Arterial Hypertension/metabolism , Severity of Illness Index
4.
Mol Metab ; 12: 48-61, 2018 06.
Article in English | MEDLINE | ID: mdl-29731256

ABSTRACT

OBJECTIVE: Breakthroughs in HIV treatment, especially combination antiretroviral therapy (ART), have massively reduced AIDS-associated mortality. However, ART administration amplifies the risk of non-AIDS defining illnesses including obesity, diabetes, and cardiovascular disease, collectively known as metabolic syndrome. Initial reports suggest that ART-associated risk of metabolic syndrome correlates with socioeconomic status, a multifaceted finding that encompasses income, race, education, and diet. Therefore, determination of causal relationships is extremely challenging due to the complex interplay between viral infection, ART, and the many environmental factors. METHODS: In the current study, we employed a mouse model to specifically examine interactions between ART and diet that impacts energy balance and glucose metabolism. Previous studies have shown that high-fat feeding induces persistent low-grade systemic and adipose tissue inflammation contributing to insulin resistance and metabolic dysregulation via adipose-infiltrating macrophages. Studies herein test the hypothesis that ART potentiates the inflammatory effects of a high-fat diet (HFD). C57Bl/6J mice on a HFD or standard chow containing ART or vehicle, were subjected to functional metabolic testing, RNA-sequencing of epididymal white adipose tissue (eWAT), and array-based kinomic analysis of eWAT-infiltrating macrophages. RESULTS: ART-treated mice on a HFD displayed increased fat mass accumulation, impaired glucose tolerance, and potentiated insulin resistance. Gene set enrichment and kinomic array analyses revealed a pro-inflammatory transcriptional signature depicting granulocyte migration and activation. CONCLUSION: The current study reveals a HFD-ART interaction that increases inflammatory transcriptional pathways and impairs glucose metabolism, energy balance, and metabolic dysfunction.


Subject(s)
Anti-Retroviral Agents/adverse effects , Glucose Intolerance/etiology , Obesity/etiology , Adipose Tissue, White/cytology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Anti-Retroviral Agents/pharmacology , Cells, Cultured , Diet, High-Fat/adverse effects , Glucose Intolerance/metabolism , Insulin Resistance , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Transcriptome
5.
J Phycol ; 51(3): 431-41, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26986660

ABSTRACT

Reactive oxygen species (ROS) produced by an oxidative burst are an important component of the wound response in algae, vascular plants, and animals. In all taxa, ROS production is usually attributed solely to a defense-related enzyme like NADPH-oxidase (Nox). However, here we show that the initial, wound-induced oxidative burst of the kelp Saccharina latissima depends on light and photosynthetic electron transport. We measured oxygen evolution and ROS production at different light levels and in the presence of a photosynthetic inhibitor, and we used spin trapping and electron paramagnetic resonance as an orthogonal method. Using an in vivo chemical probe, we provide data suggesting that wound-induced ROS production in two distantly related and geographically isolated species of Antarctic macroalgae may be light dependent as well. We propose that electron transport chains are an important and as yet unaddressed component of the wound response, not just for photosynthetic organisms, but for animals via mitochondria as well. This component may have been obscured by the historic use of diphenylene iodonium, which inhibits not only Noxes but also photosynthetic and respiratory electron transport as well. Finally, we anticipate physiological and/or ecological consequences of the light dependence of macroalgal wound-induced ROS since pathogens and grazers do not disappear in the dark.

6.
J Phycol ; 50(1): 71-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-26988009

ABSTRACT

Reactive oxygen species (ROS) are commonly produced by algal, vascular plant, and animal cells involved in the innate immune response as cellular signals promoting defense and healing and/or as a direct defense against invading pathogens. The production of reactive species in macroalgae upon injury, however, is largely uncharacterized. In this study, we surveyed 13 species of macroalgae from the Western Antarctic Peninsula and show that the release of strong oxidants is common after macroalgal wounding. Most species released strong oxidants within 1 min of wounding and/or showed cellular accumulation of strong oxidants over an hour post-wounding. Exogenous catalase was used to show that hydrogen peroxide was a component of immediate oxidant release in one of five species, but was not responsible for the entire oxidative wound response as is common in vascular plants. The other component(s) of the oxidant cocktail released upon wounding are unknown. We were unable to detect protein nitration in extracts of four oxidant-producing species flash frozen 30 s after wounding, but a role for reactive nitrogen species such as peroxynitrite cannot be completely ruled out. Two species showed evidence for the production of a catalase-activated oxidant, a mechanism previously known only from the laboratory and from the synthetic drug isoniazid used to kill the human pathogen Mycobacterium tuberculosis. The rhodophyte Palmaria decipiens, which released strong oxidants after wounding, also produced strong oxidants upon grazing by a sympatric amphipod, suggesting that oxidants are involved in the response to grazing.

SELECTION OF CITATIONS
SEARCH DETAIL
...