Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 9(4): 651-65, 2000.
Article in English | MEDLINE | ID: mdl-18255437

ABSTRACT

A robust, flexible system for tracking the point to point nonrigid motion of the left ventricular (LV) endocardial wall in image sequences has been developed. This system is unique in its ability to model motion trajectories across multiple frames. The foundation of this system is an adaptive transversal filter based on the recursive least-squares algorithm. This filter facilitates the integration of models for periodicity and proximal smoothness as appropriate using a contour-based description of the object's boundaries. A set of correspondences between contours and an associated set of correspondence quality measures comprise the input to the system. Frame-to-frame relationships from two different frames of reference are derived and analyzed using synthetic and actual images. Two multiframe temporal models, both based on a sum of sinusoids, are derived. Illustrative examples of the system's output are presented for quantitative analysis. Validation of the system is performed by comparing computed trajectory estimates with the trajectories of physical markers implanted in the LV wall. Sample case studies of marker trajectory comparisons are presented. Ensemble statistics from comparisons with 15 marker trajectories are acquired and analyzed. A multiframe temporal model without spatial periodicity constraints was determined to provide excellent performance with the least computational cost. A multiframe spatiotemporal model provided the best performance based on statistical standard deviation, although at significant computational expense.

2.
IEEE Trans Med Imaging ; 16(3): 270-83, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9184889

ABSTRACT

An approach for tracking and quantifying the nonrigid, nonuniform motion of the left ventricular (LV) endocardial wall from two-dimensional (2-D) cardiac image sequences, on a point-by-point basis over the entire cardiac cycle, is presented. Given a set of boundaries, motion computation involves first matching local segments on one contour to segments on the next contour in the sequence using a shape-based strategy. Results from the match process are incorporated with a smoothness term into an optimization functional. The global minimum of this functional is found, resulting in a smooth flow field that is consistent with the match data. The computation is performed for all pairs of frames in the temporal sequence and equally sampled points on one contour are tracked throughout the sequence, resulting in a composite flow field over the entire sequence. Two perspectives on characterizing the optimization functional are presented which result in a tradeoff resolved by the confidence in the initial boundary segmentation. Experimental results for contours derived from diagnostic image sequences of three different imaging modalities are presented. A comparison of trajectory estimates with trajectories of gold-standard markers implanted in the LV wall are presented for validation. The results of this comparison confirm that although cardiac motion is a three-dimensional (3-D) problem, two-dimensional (2-D) analysis provides a rich testing ground for algorithm development.


Subject(s)
Image Processing, Computer-Assisted , Myocardial Contraction/physiology , Ventricular Function, Left/physiology , Algorithms , Animals , Dogs , Echocardiography , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging , Models, Cardiovascular , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...