Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 1(3): 120-4, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-24900185

ABSTRACT

During the course of our research efforts to develop a potent and selective γ-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-ß precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of γ-secretase (Aß40 IC50 = 0.30 nM), demonstrating a 193-fold selectivity against Notch. Oral administration of 4 significantly reduced Aß40 levels for sustained periods in brain, plasma, and cerebrospinal fluid in rats and dogs.

2.
J Biol Chem ; 283(34): 22992-3003, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18574238

ABSTRACT

The amyloid-beta (Abeta) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid-beta precursor protein (APP) through consecutive proteolytic cleavages by beta-site APP-cleaving enzyme and gamma-secretase. Unexpectedly gamma-secretase inhibitors can increase the secretion of Abeta peptides under some circumstances. This "Abeta rise" phenomenon, the same inhibitor causing an increase in Abeta at low concentrations but inhibition at higher concentrations, has been widely observed. Here we show that the Abeta rise depends on the beta-secretase-derived C-terminal fragment of APP (betaCTF) or C99 levels with low levels causing rises. In contrast, the N-terminally truncated form of Abeta, known as "p3," formed by alpha-secretase cleavage, did not exhibit a rise. In addition to the Abeta rise, low betaCTF or C99 expression decreased gamma-secretase inhibitor potency. This "potency shift" may be explained by the relatively high enzyme to substrate ratio under conditions of low substrate because increased concentrations of inhibitor would be necessary to affect substrate turnover. Consistent with this hypothesis, gamma-secretase inhibitor radioligand occupancy studies showed that a high level of occupancy was correlated with inhibition of Abeta under conditions of low substrate expression. The Abeta rise was also observed in rat brain after dosing with the gamma-secretase inhibitor BMS-299897. The Abeta rise and potency shift are therefore relevant factors in the development of gamma-secretase inhibitors and can be evaluated using appropriate choices of animal and cell culture models. Hypothetical mechanisms for the Abeta rise, including the "incomplete processing" and endocytic models, are discussed.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Gene Expression Regulation, Enzymologic , Animals , Brain/metabolism , Butyrates/pharmacology , Cell Line , Enzyme Inhibitors/pharmacology , Female , Humans , Hydrocarbons, Halogenated/pharmacology , Mice , Protein Binding , Protein Structure, Tertiary , Rats , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...