Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 14(634): eabm0306, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35235342

ABSTRACT

The CEACAM5 gene product [carcinoembryonic antigen (CEA)] is an attractive target for colorectal cancer because of its high expression in virtually all colorectal tumors and limited expression in most healthy adult tissues. However, highly active CEA-directed investigational therapeutics have been reported to be toxic, causing severe colitis because CEA is expressed on normal gut epithelial cells. Here, we developed a strategy to address this toxicity problem: the Tmod dual-signal integrator. CEA Tmod cells use two receptors: a chimeric antigen receptor (CAR) activated by CEA and a leukocyte Ig-like receptor 1 (LIR-1)-based inhibitory receptor triggered by human leukocyte antigen (HLA)-A*02. CEA Tmod cells exploit instances of HLA heterozygous gene loss in tumors to protect the patient from on-target, off-tumor toxicity. CEA Tmod cells potently killed CEA-expressing tumor cells in vitro and in vivo. But in contrast to a traditional CEA-specific T cell receptor transgenic T cell, Tmod cells were highly selective for tumor cells even when mixed with HLA-A*02-expressing cells. These data support further development of the CEA Tmod construct as a therapeutic candidate for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Receptors, Chimeric Antigen , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/metabolism , Cell- and Tissue-Based Therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , HLA-A2 Antigen/genetics , Humans , Loss of Heterozygosity
2.
Toxicol Appl Pharmacol ; 437: 115894, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35085592

ABSTRACT

Cell therapy is an emerging therapeutic modality with the power to exploit new cancer targets and potentially achieve positive outcomes for patients with few other options. Like all synthetic treatments, cell therapy has the risk of toxicity via unpredicted off-target behavior. We describe an empirical method to model off-tumor, off-target reactivity of receptors used for investigational T cell therapies. This approach utilizes an optimal panel of diverse human cell-lines to capture the large majority of protein-coding gene expression in adult human tissues. We apply this cell-line set to test Jurkat and primary T cells engineered with a dual-signal integrator, called TmodTM, that contains an activating receptor (activator) and a separate inhibitory receptor (blocker). In proof-of-concept experiments, we use CD19 as the activating antigen and HLA-A*02 as the blocker antigen. This specific Tmod system, which employs a blocker targeting a ubiquitously expressed HLA class I antigen to inhibit CAR activation, has an inherent mechanism for selectivity/safety, designed to activate only when a specific HLA class I antigen is lost. Nonetheless, it is important to test off-target reactivity in functional assays, especially given the disconnect between ligand-binding and function among T cell receptors (TCRs) and chimeric antigen receptors (CARs). We show these cell-based assays yield consistent results with high sensitivity and specificity. The general strategy is likely applicable to more traditional single-receptor CAR- and TCR-T therapeutics.


Subject(s)
Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/physiology , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cell Line, Tumor , Computational Biology , Gene Deletion , Gene Expression Regulation , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Mol Immunol ; 138: 137-149, 2021 10.
Article in English | MEDLINE | ID: mdl-34419823

ABSTRACT

Though TCRs have been subject to limited engineering in the context of therapeutic design and optimization, they are used largely as found in nature. On the other hand, CARs are artificial, composed of different segments of proteins that function in the immune system. This characteristic raises the possibility of altered response to immune regulatory stimuli. Here we describe a large-scale, systematic comparison of CARs and TCRs across 5 different pMHC targets, with a total of 19 constructs examined in vitro. These functional measurements include CAR- and TCR-mediated activation, proliferation, and cytotoxicity in both acute and chronic settings. Surprisingly, we find no consistent difference between CARs and TCRs as receptor classes with respect to their relative sensitivity to major regulators of T cell activation: PD-L1, CD80/86 and IL-2. Though TCRs often emerge from human blood directly as potent, selective receptors, CARs must be heavily optimized to attain these properties for pMHC targets. Nonetheless, when iteratively improved and compared head to head in functional tests, CARs appear remarkably similar to TCRs with respect to immune modulation.


Subject(s)
Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Humans
4.
J Immunother ; 44(8): 292-306, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34432728

ABSTRACT

Next-generation T-cell therapies will likely continue to utilize T-cell receptors (TCRs) and chimeric antigen receptors (CARs) because each receptor type has advantages. TCRs often possess exceptional properties even when tested unmodified from patients' T cells. CARs are generally less sensitive, possibly because their ligand-binding domains are grafted from antibodies selected for binding affinity or avidity and not broadly optimized for a functional response. Because of the disconnect between binding and function among these receptor types, the ultimate potential of CARs optimized for sensitivity and selectivity is not clear. Here, we focus on a thoroughly studied immuno-oncology target, the HLA-A*02/HPV-E629-38 complex, and show that CARs can be optimized by a combination of high-throughput binding screens and low-throughput functional assays to have comparable activity to clinical TCRs in acute assays in vitro. These results provide a case study for the challenges and opportunities of optimizing high-performing CARs, especially in the context of targets utilized naturally by TCRs.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/therapy , Papillomavirus Infections/therapy , Receptors, Chimeric Antigen/immunology , Cell Line , Green Fluorescent Proteins , HLA-A2 Antigen/immunology , Humans , Interferon-gamma/immunology , Luciferases, Firefly , Neoplasms/immunology , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Peptides/immunology , Repressor Proteins/immunology , Single-Chain Antibodies/immunology
5.
J Immunother ; 44(3): 95-105, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33284140

ABSTRACT

In 2013, an innovative MAGE-A3-directed cancer therapeutic of great potential value was terminated in the clinic because of neurotoxicity. The safety problems were hypothesized to originate from off-target T-cell receptor activity against a closely related MAGE-A12 peptide. A combination of published and new data led us to test this hypothesis with current technology. Our results call into question MAGE-A12 as the source of the neurotoxicity. Rather, the data imply that an alternative related peptide from EPS8L2 may be responsible. Given the qualities of MAGE-A3 as an onco-testis antigen widely expressed in tumors and largely absent from normal adult tissues, these findings suggest that MAGE-A3 may deserve further consideration as a cancer target. As a step in this direction, the authors isolated 2 MAGE-A3 peptide-major histocompatibility complex-directed chimeric antigen receptors, 1 targeting the same peptide as the clinical T-cell receptor. Both chimeric antigen receptors have improved selectivity over the EPS8L2 peptide that represents a significant risk for MAGE-A3-targeted therapeutics, showing that there may be other options for MAGE-A3 cell therapy.


Subject(s)
Antigens, Neoplasm/immunology , Neoplasm Proteins/immunology , Receptors, Antigen, T-Cell/immunology , Cell Line , Cell Line, Tumor , HCT116 Cells , HEK293 Cells , Humans , Jurkat Cells , Leukocytes, Mononuclear/immunology , MCF-7 Cells , Major Histocompatibility Complex/immunology , Neoplasms/immunology , PC-3 Cells , Receptors, Chimeric Antigen/immunology
6.
Mol Immunol ; 126: 56-64, 2020 10.
Article in English | MEDLINE | ID: mdl-32768859

ABSTRACT

Chimeric antigen receptors (CARs) and their parent signaling molecule, the T cell receptor (TCR), are fascinating proteins of increasing relevance to disease therapy. Here we use a collection of 1221 pMHC-directed CAR constructs representing 10 pMHC targets to study aspects of CAR structure-activity relationships (SAR), with particular focus on the extracellular and transmembrane structural components. These experiments that involve pMHC targets whose number/cell can be manipulated by peptide dosing in vitro enable systematic analysis of the SAR of CARs in carefully controlled experimental situations (Harris and Kranz, 2016). We find that CARs tolerate a wide range of structural variation, with the ligand-binding domains (LBDs) dominating the SAR of CAR antigen sensitivity. Notwithstanding the critical role of the LBD, CAR antigen-binding on the cell surface, measured by pMHC tetramer staining, is not an effective predictor of functional sensitivity. These results have important implications for the design and testing of CARs aimed toward the clinic.


Subject(s)
HLA-A Antigens/immunology , Receptors, Chimeric Antigen/metabolism , Signal Transduction/immunology , T-Lymphocytes/immunology , Binding Sites/immunology , HLA-A Antigens/metabolism , Humans , Jurkat Cells , Ligands , MCF-7 Cells , Protein Domains/immunology , Protein Multimerization/immunology , Receptors, Chimeric Antigen/immunology , Structure-Activity Relationship , T-Lymphocytes/metabolism
7.
Sci Rep ; 10(1): 6919, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332814

ABSTRACT

To accelerate the cardiac drug discovery pipeline, we set out to develop a platform that would be capable of quantifying tissue-level functions such as contractile force and be amenable to standard multiwell-plate manipulations. We report a 96-well-based array of 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues - termed Cardiac MicroRings (CaMiRi) - in custom 3D-print-molded multiwell plates capable of contractile force measurement. Within each well, two elastomeric microcantilevers are situated above a circumferential ramp. The wells are seeded with cell-laden collagen, which, in response to the gradual slope of the circumferential ramp, self-organizes around tip-gated microcantilevers to form contracting CaMiRi. The contractile force exerted by the CaMiRi is measured and calculated using the deflection of the cantilevers. Platform responses were robust and comparable across wells, and we used it to determine an optimal tissue formulation. We validated the contractile force response of CaMiRi using selected cardiotropic compounds with known effects. Additionally, we developed automated protocols for CaMiRi seeding, image acquisition, and analysis to enable the measurement of contractile force with increased throughput. The unique tissue fabrication properties of the platform, and the consequent effects on tissue function, were demonstrated upon adding hPSC-derived epicardial cells to the system. This platform represents an open-source contractile force screening system useful for drug screening and tissue engineering applications.


Subject(s)
Pluripotent Stem Cells/cytology , Tissue Engineering/methods , Animals , Automation , Cardiotonic Agents/pharmacology , Cells, Cultured , Heart/drug effects , Heart/physiology , Humans , Mice , Myocardial Contraction/drug effects , Pluripotent Stem Cells/drug effects , Printing, Three-Dimensional
8.
J Biomol Screen ; 18(9): 997-1007, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23686102

ABSTRACT

Surrogate readouts of G-protein-coupled receptor signaling pathways using highly engineered systems are often employed in the drug discovery process. However, accumulating data have demonstrated the importance of selecting relevant biological activity rather than technically facile assays to support high-throughout screening and subsequent structure-activity relationship studies. Here we report a case study using sphingosine-1-phosphate receptor 1 (S1P(1)) as the model system to compare compound activity in six different in vitro assays with their ability to predict in vivo efficacy. S1P(1) has long been validated as a therapeutic target for autoimmune diseases. In this article, in vivo and in vitro studies on 19 S1P1 agonists are reported. In vitro activities of these S1P(1) agonists, together with S1P and FTY720p, on Ca(2+) mobilization, adenylyl cyclase inhibition, extracellular signal-related kinase (ERK) phosphorylation, ß-arrestin recruitment, and receptor internalization, were determined. The in vitro potency of these compounds was correlated with their ability to induce peripheral lymphocyte reduction. The results revealed that inhibition of adenylyl cyclase and induction of ß-arrestin recruitment and receptor internalization are good indicators to predict in vivo efficacy, whereas induction of Ca(2+) mobilization through G(qi/5) coupling and ERK phosphorylation is irrelevant. This study demonstrated the importance of identifying an appropriate in vitro assay to predict in vivo activity based on the biological relevance in the drug discovery setting.


Subject(s)
Biological Assay , Lymphocyte Depletion/methods , Receptors, Lysosphingolipid/agonists , Small Molecule Libraries/pharmacology , Adenylyl Cyclase Inhibitors , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Arrestins/genetics , Arrestins/metabolism , Calcium/metabolism , Drug Discovery , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Humans , Kinetics , Organophosphates/pharmacology , Phosphorylation , Predictive Value of Tests , Protein Conformation , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Signal Transduction , Small Molecule Libraries/chemistry , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , beta-Arrestins
9.
Bioorg Med Chem Lett ; 22(4): 1779-83, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22257889

ABSTRACT

Replacement of the azetidine carboxylate of an S1P(1) agonist development candidate, AMG 369, with a range of acyclic head-groups led to the identification of a novel, S1P(3)-sparing S1P(1) agonist, (-)-2-amino-4-(3-fluoro-4-(5-(1-phenylcyclopropyl)thiazolo[5,4-b]pyridin-2-yl)phenyl)-2-methylbutanoic acid (8c), which possessed good in vivo efficacy and pharmacokinetic properties. A 0.3mg/kg oral dose of 8c produced a statistically significant reduction in blood lymphocyte counts 24h post-dosing in female Lewis rats.


Subject(s)
Amines/chemistry , Carboxylic Acids/chemistry , Protein Isoforms/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Lysosphingolipid/agonists , Thiazoles/chemistry , Administration, Oral , Animals , Cyclization , Female , Inhibitory Concentration 50 , Molecular Structure , Protein Binding/drug effects , Rats , Rats, Inbred Lew , Thiazoles/chemical synthesis , Thiazoles/pharmacology
10.
Bioorg Med Chem Lett ; 22(1): 628-33, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22100314

ABSTRACT

An SAR campaign designed to increase polarity in the 'tail' region of benzothiazole 1 resulted in two series of structurally novel 5-and 6-substituted S1P(1) agonists. Structural optimization for potency ultimately delivered carboxamide (+)-11f, which in addition to possessing improved physicochemical properties relative to starting benzothiazole 1, also displayed good S1P(3) selectivity and acceptable in vivo lymphocyte-depleting activity.


Subject(s)
Benzothiazoles/chemistry , Lymphocytes/drug effects , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/chemistry , Animals , CHO Cells , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Chemistry, Physical/methods , Cricetinae , Cricetulus , Drug Design , Female , Green Fluorescent Proteins/metabolism , Humans , Ketones , Lymphocytes/cytology , Models, Chemical , Rats , Rats, Inbred Lew , Receptors, G-Protein-Coupled/metabolism
11.
ACS Med Chem Lett ; 3(1): 74-8, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-24900374

ABSTRACT

The optimization of a series of S1P1 agonists with limited activity against S1P3 is reported. A polar headgroup was used to improve the physicochemical and pharmacokinetic parameters of lead quinolinone 6. When dosed orally at 1 and 3 mg/kg, the azahydroxymethyl analogue 22 achieved statistically significant lowering of circulating blood lymphocytes 24 h postdose. In rats, a dose-proportional increase in exposure was measured when 22 was dosed orally at 2 and 100 mg/kg.

12.
Bioorg Med Chem Lett ; 22(1): 527-31, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22104144

ABSTRACT

We reveal how a N-scan SAR strategy (systematic substitution of each CH group with a N atom) was employed for quinolinone-based S1P(1) agonist 5 to modulate physicochemical properties and optimize in vitro and in vivo activity. The diaza-analog 17 displays improved potency (hS1P(1) RI; 17: EC(50)=0.020 µM, 120% efficacy; 5: EC(50)=0.070 µM, 110% efficacy) and selectivity (hS1P(3) Ca(2+) flux; 17: EC(50) >25 µM; 5: EC(50)=1.5 µM, 92% efficacy), as well as enhanced pharmacokinetics (17: CL=0.15 L/h/kg, V(dss)=5.1L/kg, T(1/2)=24h, %F=110; 5: CL=0.93L/h/kg, V(dss)=11L/kg, T(1/2)=15 h, %F=60) and pharmacodynamics (17: 1.0mg/kg po, 24h PLC POC=-67%; 5: 3mg/kg po, 24h PLC POC=-51%) in rat.


Subject(s)
Chemistry, Physical/methods , Quinolones/pharmacology , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/chemistry , Animals , Area Under Curve , Cardiovascular Diseases/metabolism , Drug Design , Female , Humans , Immunosuppressive Agents/pharmacology , In Vitro Techniques , Kinetics , Lymphocytes/cytology , Lymphocytes/metabolism , Models, Chemical , Multiple Sclerosis/drug therapy , Quinolones/chemistry , Rats , Rats, Inbred Lew , Structure-Activity Relationship
13.
ACS Med Chem Lett ; 2(10): 752-7, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-24900263

ABSTRACT

The sphingosine-1-phosphate-1 receptor (S1P1) and its endogenous ligand sphingosine-1-phosphate (S1P) cooperatively regulate lymphocyte trafficking from the lymphatic system. Herein, we disclose 4-methoxy-N-[2-(trifluoromethyl)biphenyl-4-ylcarbamoyl]nicotinamide (8), an uncommon example of a synthetic S1P1 agonist lacking a polar headgroup, which is shown to effect dramatic reduction of circulating lymphocytes (POC = -78%) in rat 24 h after a single oral dose (1 mg/kg). The excellent potency that 8 exhibits toward S1P1 (EC50 = 0.035 µM, 96% efficacy) and the >100-fold selectivity that it displays against receptor subtypes S1P2-5 suggest that it may serve as a valuable tool to understand the clinical relevance of selective S1P1 agonism.

14.
ACS Med Chem Lett ; 2(2): 97-101, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-24900286

ABSTRACT

We have discovered novel benzofuran-based S1P1 agonists with excellent in vitro potency and selectivity. 1-((4-(5-Benzylbenzofuran-2-yl)-3-fluorophenyl)methyl) azetidine-3-carboxylic acid (18) is a potent S1P1 agonist with >1000× selectivity over S1P3. It demonstrated a good in vitro ADME profile and excellent oral bioavailability across species. Dosed orally at 0.3 mg/kg, 18 significantly reduced blood lymphocyte counts 24 h postdose and demonstrated efficacy in a mouse EAE model of relapsing MS.

15.
ACS Med Chem Lett ; 2(2): 102-6, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-24900287

ABSTRACT

Optimization of a benzofuranyl S1P1 agonist lead compound (3) led to the discovery of 1-(3-fluoro-4-(5-(2-fluorobenzyl)benzo[d]thiazol-2-yl)benzyl)azetidine-3-carboxylic acid (14), a potent S1P1 agonist with minimal activity at S1P3. Dosed orally at 0.3 mg/kg, 14 significantly reduced blood lymphocyte counts 24 h postdose and attenuated a delayed type hypersensitivity (DTH) response to antigen challenge.

16.
ACS Med Chem Lett ; 2(2): 107-12, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-24900288

ABSTRACT

The optimization of a series of thiazolopyridine S1P1 agonists with limited activity at the S1P3 receptor is reported. These efforts resulted in the discovery of 1-(3-fluoro-4-(5-(1-phenylcyclopropyl)thiazolo-[5,4-b]pyridin-2-yl)benzyl)azetidine-3-carboxylic acid (5d, AMG 369), a potent dual S1P1/S1P5 agonist with limited activity at S1P3 and no activity at S1P2/S1P4. Dosed orally at 0.1 mg/kg, 5d is shown to reduce blood lymphocyte counts 24 h postdose and delay the onset and reduce the severity of experimental autoimmune encephalomyelitis in rat.

17.
Bioorg Med Chem Lett ; 16(14): 3713-8, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16697190

ABSTRACT

We report the discovery of potent agonists for the human formyl-peptide-like 1 receptor (hFPRL1). These compounds did not act at a closely related receptor denoted human formyl peptide receptor (hFPR) up to 10 microM concentration. Recent studies have indicated that agonizing this receptor may promote resolution of inflammation. In an exploratory study, a novel hFPRL1 agonist showed efficacy in a mouse ear inflammation model following oral administration.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Receptors, Formyl Peptide/agonists , Receptors, Lipoxin/agonists , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...