Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2300081120, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37579174

ABSTRACT

We propose a design paradigm for multistate machines where transitions from one state to another are organized by bifurcations of multiple equilibria of the energy landscape describing the collective interactions of the machine components. This design paradigm is attractive since, near bifurcations, small variations in a few control parameters can result in large changes to the system's state providing an emergent lever mechanism. Further, the topological configuration of transitions between states near such bifurcations ensures robust operation, making the machine less sensitive to fabrication errors and noise. To design such machines, we develop and implement a new efficient algorithm that searches for interactions between the machine components that give rise to energy landscapes with these bifurcation structures. We demonstrate a proof of concept for this approach by designing magnetoelastic machines whose motions are primarily guided by their magnetic energy landscapes and show that by operating near bifurcations we can achieve multiple transition pathways between states. This proof of concept demonstration illustrates the power of this approach, which could be especially useful for soft robotics and at the microscale where typical macroscale designs are difficult to implement.

2.
Proc Natl Acad Sci U S A ; 120(19): e2221740120, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37126707

ABSTRACT

Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.

3.
Proc Natl Acad Sci U S A ; 119(45): e2205322119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36367955

ABSTRACT

We present in situ calorimetry, thermal conductivity, and thermal diffusivity measurements of materials using temperature-sensing optical wireless integrated circuits (OWiCs). These microscopic and untethered optical sensors eliminate input wires and reduce parasitic effects. Each OWiC has a mass of ∼100 ng, a 100-µm-scale footprint, and a thermal response time of microseconds. We demonstrate that they can measure the thermal properties of nearly any material, from aerogels to metals, on samples as small as 100 ng and over thermal diffusivities covering four orders of magnitude. They also function over a broad temperature range, and we present proof-of-concept measurements of the thermodynamic phase transitions in both liquid crystal 5CB and gadolinium.


Subject(s)
Liquid Crystals , Thermal Conductivity , Temperature , Calorimetry , Thermodynamics
4.
Sci Robot ; 7(70): eabq2296, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36129993

ABSTRACT

Autonomous robots-systems where mechanical actuators are guided through a series of states by information processing units to perform a predesigned function-are expected to revolutionize everything from health care to transportation. Microscopic robots are poised for a similar revolution in fields from medicine to environmental remediation. A key hurdle to developing these microscopic robots is the integration of information systems, particularly electronics fabricated at commercial foundries, with microactuators. Here, we develop such an integration process and build microscopic robots controlled by onboard complementary metal oxide semiconductor electronics. The resulting autonomous, untethered robots are 100 to 250 micrometers in size, are powered by light, and walk at speeds greater than 10 micrometers per second. In addition, we demonstrate a microscopic robot that can respond to an optical command. This work paves the way for ubiquitous autonomous microscopic robots that perform complex functions, respond to their environments, and communicate with the outside world.


Subject(s)
Robotics , Oxides
5.
Soft Matter ; 18(34): 6404-6410, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35979744

ABSTRACT

The ability to rapidly manufacture building blocks with specific binding interactions is a key aspect of programmable assembly. Recent developments in DNA nanotechnology and colloidal particle synthesis have significantly advanced our ability to create particle sets with programmable interactions, based on DNA or shape complementarity. The increasing miniaturization underlying magnetic storage offers a new path for engineering programmable components for self assembly, by printing magnetic dipole patterns on substrates using nanotechnology. How to efficiently design dipole patterns for programmable assembly remains an open question as the design space is combinatorially large. Here, we present design rules for programming these magnetic interactions. By optimizing the structure of the dipole pattern, we demonstrate that the number of independent building blocks scales super linearly with the number of printed domains. We test these design rules using computational simulations of self assembled blocks, and experimental realizations of the blocks at the mm scale, demonstrating that the designed blocks give high yield assembly. In addition, our design rules indicate that with current printing technology, micron sized magnetic panels could easily achieve hundreds of different building blocks.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Magnetic Phenomena
6.
Nature ; 605(7911): 681-686, 2022 05.
Article in English | MEDLINE | ID: mdl-35614247

ABSTRACT

Cilial pumping is a powerful strategy used by biological organisms to control and manipulate fluids at the microscale. However, despite numerous recent advances in optically, magnetically and electrically driven actuation, development of an engineered cilial platform with the potential for applications has remained difficult to realize1-6. Here we report on active metasurfaces of electronically actuated artificial cilia that can create arbitrary flow patterns in liquids near a surface. We first create voltage-actuated cilia that generate non-reciprocal motions to drive surface flows at tens of microns per second at actuation voltages of 1 volt. We then show that a cilia unit cell can locally create a range of elemental flow geometries. By combining these unit cells, we create an active cilia metasurface that can generate and switch between any desired surface flow pattern. Finally, we integrate the cilia with a light-powered complementary metal-oxide-semiconductor (CMOS) clock circuit to demonstrate wireless operation. As a proof of concept, we use this circuit to output voltage pulses with various phase delays to demonstrate improved pumping efficiency using metachronal waves. These powerful results, demonstrated experimentally and confirmed using theoretical computations, illustrate a pathway towards fine-scale microfluidic manipulation, with applications from microfluidic pumping to microrobotic locomotion.

7.
Sci Adv ; 8(15): eabi8481, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35427167

ABSTRACT

Electronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range. Away from neutrality, the electron-hole conductivity collapses to a single curve, and a set of just four fitting parameters provides quantitative agreement between theory and experiment at all densities, temperatures, and gaps measured. This work validates recent theories for dissipation-enabled hydrodynamic conductivity and creates a link between semiconductor physics and the emerging field of viscous electronics.

8.
Sci Robot ; 6(52)2021 03 17.
Article in English | MEDLINE | ID: mdl-34043551

ABSTRACT

Shape-memory actuators allow machines ranging from robots to medical implants to hold their form without continuous power, a feature especially advantageous for situations where these devices are untethered and power is limited. Although previous work has demonstrated shape-memory actuators using polymers, alloys, and ceramics, the need for micrometer-scale electro-shape-memory actuators remains largely unmet, especially ones that can be driven by standard electronics (~1 volt). Here, we report on a new class of fast, high-curvature, low-voltage, reconfigurable, micrometer-scale shape-memory actuators. They function by the electrochemical oxidation/reduction of a platinum surface, creating a strain in the oxidized layer that causes bending. They bend to the smallest radius of curvature of any electrically controlled microactuator (~500 nanometers), are fast (<100-millisecond operation), and operate inside the electrochemical window of water, avoiding bubble generation associated with oxygen evolution. We demonstrate that these shape-memory actuators can be used to create basic electrically reconfigurable microscale robot elements including actuating surfaces, origami-based three-dimensional shapes, morphing metamaterials, and mechanical memory elements. Our shape-memory actuators have the potential to enable the realization of adaptive microscale structures, bio-implantable devices, and microscopic robots.


Subject(s)
Robotics/instrumentation , Smart Materials , Electricity , Electrochemical Techniques , Equipment Design , Humans , Mechanical Phenomena , Microtechnology , Oxidation-Reduction , Platinum/chemistry , Smart Materials/chemistry
9.
Phys Rev Lett ; 126(14): 146402, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891445

ABSTRACT

Monolayer graphene aligned with hexagonal boron nitride (h-BN) develops a gap at the charge neutrality point (CNP). This gap has previously been extensively studied by electrical transport through thermal activation measurements. Here, we report the determination of the gap size at the CNP of graphene/h-BN superlattice through photocurrent spectroscopy study. We demonstrate two distinct measurement approaches to extract the gap size. A maximum of ∼14 meV gap is observed for devices with a twist angle of less than 1°. This value is significantly smaller than that obtained from thermal activation measurements, yet larger than the theoretically predicted single-particle gap. Our results suggest that lattice relaxation and moderate electron-electron interaction effects may enhance the CNP gap in graphene/h-BN superlattice.

11.
J Microelectromech Syst ; 29(5): 720-726, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33071528

ABSTRACT

In vivo, chronic neural recording is critical to understand the nervous system, while a tetherless, miniaturized recording unit can render such recording minimally invasive. We present a tetherless, injectable micro-scale opto-electronically transduced electrode (MOTE) that is ~60µm × 30µm × 330µm, the smallest neural recording unit to date. The MOTE consists of an AlGaAs micro-scale light emitting diode (µLED) heterogeneously integrated on top of conventional 180nm complementary metal-oxide-semiconductor (CMOS) circuit. The MOTE combines the merits of optics (AlGaAs µLED for power and data uplink), and of electronics (CMOS for signal amplification and encoding). The optical powering and communication enable the extreme scaling while the electrical circuits provide a high temporal resolution (<100µs). This paper elaborates on the heterogeneous integration in MOTEs, a topic that has been touted without much demonstration on feasibility or scalability. Based on photolithography, we demonstrate how to build heterogenous systems that are scalable as well as biologically stable - the MOTEs can function in saline water for more than six months, and in a mouse brain for two months (and counting). We also present handling/insertion techniques for users (i.e. biologists) to deploy MOTEs with little or no extra training.

12.
Nature ; 584(7822): 557-561, 2020 08.
Article in English | MEDLINE | ID: mdl-32848225

ABSTRACT

Fifty years of Moore's law scaling in microelectronics have brought remarkable opportunities for the rapidly evolving field of microscopic robotics1-5. Electronic, magnetic and optical systems now offer an unprecedented combination of complexity, small size and low cost6,7, and could be readily appropriated for robots that are smaller than the resolution limit of human vision (less than a hundred micrometres)8-11. However, a major roadblock exists: there is no micrometre-scale actuator system that seamlessly integrates with semiconductor processing and responds to standard electronic control signals. Here we overcome this barrier by developing a new class of voltage-controllable electrochemical actuators that operate at low voltages (200 microvolts), low power (10 nanowatts) and are completely compatible with silicon processing. To demonstrate their potential, we develop lithographic fabrication-and-release protocols to prototype sub-hundred-micrometre walking robots. Every step in this process is performed in parallel, allowing us to produce over one million robots per four-inch wafer. These results are an important advance towards mass-manufactured, silicon-based, functional robots that are too small to be resolved by the naked eye.

13.
Nat Commun ; 11(1): 4163, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32820165

ABSTRACT

Solid-state magnetic field sensors are important for applications in commercial electronics and fundamental materials research. Most magnetic field sensors function in a limited range of temperature and magnetic field, but Hall sensors in principle operate over a broad range of these conditions. Here, we evaluate ultraclean graphene as a material platform for high-performance Hall sensors. We fabricate micrometer-scale devices from graphene encapsulated with hexagonal boron nitride and few-layer graphite. We optimize the magnetic field detection limit under different conditions. At 1 kHz for a 1 µm device, we estimate a detection limit of 700 nT Hz-1/2 at room temperature, 80 nT Hz-1/2 at 4.2 K, and 3 µT Hz-1/2 in 3 T background field at 4.2 K. Our devices perform similarly to the best Hall sensors reported in the literature at room temperature, outperform other Hall sensors at 4.2 K, and demonstrate high performance in a few-Tesla magnetic field at which the sensors exhibit the quantum Hall effect.

14.
Nat Commun ; 11(1): 2941, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32523020

ABSTRACT

Selection rules are of vital importance in determining the basic optical properties of atoms, molecules and semiconductors. They provide general insights into the symmetry of the system and the nature of relevant electronic states. A two-dimensional electron gas in a magnetic field is a model system where optical transitions between Landau levels (LLs) are described by simple selection rules associated with the LL index N. Here we examine the inter-LL optical transitions of high-quality bilayer graphene by photocurrent spectroscopy measurement. We observed valley-dependent optical transitions that violate the conventional selection rules Δ|N| = ± 1. Moreover, we can tune the relative oscillator strength by tuning the bilayer graphene bandgap. Our findings provide insights into the interplay between magnetic field, band structure and many-body interactions in tunable semiconductor systems, and the experimental technique can be generalized to study symmetry-broken states and low energy magneto-optical properties of other nano and quantum materials.

15.
Nat Commun ; 11(1): 3271, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32581218

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nano Lett ; 20(7): 4850-4856, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32525319

ABSTRACT

Origami design principles are scale invariant and enable direct miniaturization of origami structures provided the sheets used for folding have equal thickness to length ratios. Recently, seminal steps have been taken to fabricate microscale origami using unidirectionally actuated sheets with nanoscale thickness. Here, we extend the full power of origami-inspired fabrication to nanoscale sheets by engineering bidirectional folding with 4 nm thick atomic layer deposition (ALD) SiNx-SiO2 bilayer films. Strain differentials within these bilayers result in bending, producing microscopic radii of curvature. We lithographically pattern these bilayers and localize the bending using rigid panels to fabricate a variety of complex micro-origami devices. Upon release, these devices self-fold according to prescribed patterns. Our approach combines planar semiconductor microfabrication methods with computerized origami design, making it easy to fabricate and deploy such microstructures en masse. These devices represent an important step forward in the fabrication and assembly of deployable micromechanical systems that can interact with and manipulate micro- and nanoscale environments.

17.
Proc Natl Acad Sci U S A ; 117(17): 9173-9179, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32303653

ABSTRACT

We present a platform for parallel production of standalone, untethered electronic sensors that are truly microscopic, i.e., smaller than the resolution of the naked eye. This platform heterogeneously integrates silicon electronics and inorganic microlight emitting diodes (LEDs) into a 100-µm-scale package that is powered by and communicates with light. The devices are fabricated, packaged, and released in parallel using photolithographic techniques, resulting in ∼10,000 individual sensors per square inch. To illustrate their use, we show proof-of-concept measurements recording voltage, temperature, pressure, and conductivity in a variety of environments.


Subject(s)
Electronics/instrumentation , Equipment Design/methods , Electric Conductivity , Electric Power Supplies , Optical Devices/trends , Silicon/chemistry
18.
Proc Natl Acad Sci U S A ; 116(49): 24402-24407, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31754038

ABSTRACT

Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assembly that works across length scales. Our building blocks consist of panels with different patterns of magnetic dipoles that are capable of specific binding. Because the ratios of the different panel-binding energies are scale-invariant, this approach can, in principle, be applied down to the nanometer scale. Using a centimeter-sized version of these panels, we demonstrate 3 canonical hallmarks of assembly: controlled polymerization of individual building blocks; assembly of 1-dimensional strands made of panels connected by elastic backbones into secondary structures; and hierarchical assembly of 2-dimensional nets into 3-dimensional objects. We envision that magnetic encoding of assembly instructions into primary structures of panels, strands, and nets will lead to the formation of secondary and even tertiary structures that transmit information, act as mechanical elements, or function as machines on scales ranging from the nano to the macro.

19.
Nano Lett ; 19(9): 6221-6226, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31430164

ABSTRACT

Small-scale optical and mechanical components and machines require control over three-dimensional structure at the microscale. Inspired by the analogy between paper and two-dimensional materials, origami-style folding of atomically thin materials offers a promising approach for making microscale structures from the thinnest possible sheets. In this Letter, we show that a monolayer of molybdenum disulfide (MoS2) can be folded into three-dimensional shapes by a technique called capillary origami, in which the surface tension of a droplet drives the folding of a thin sheet. We define shape nets by patterning rigid metal panels connected by MoS2 hinges, allowing us to fold micron-scale polyhedrons. Finally, we demonstrate that these shapes can be folded in parallel without the use of micropipettes or microfluidics by means of a microemulsion of droplets that dissolves into the bulk solution to drive folding. These results demonstrate controllable folding of the thinnest possible materials using capillary origami and indicate a route forward for design and parallel fabrication of more complex three-dimensional micron-scale structures and machines.


Subject(s)
Disulfides/chemistry , Membranes, Artificial , Molybdenum/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure
20.
Adv Mater ; 31(29): e1901944, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31148291

ABSTRACT

Bending and folding techniques such as origami and kirigami enable the scale-invariant design of 3D structures, metamaterials, and robots from 2D starting materials. These design principles are especially valuable for small systems because most micro- and nanofabrication involves lithographic patterning of planar materials. Ultrathin films of inorganic materials serve as an ideal substrate for the fabrication of flexible microsystems because they possess high intrinsic strength, are not susceptible to plasticity, and are easily integrated into microfabrication processes. Here, atomic layer deposition (ALD) is employed to synthesize films down to 2 nm thickness to create membranes, metamaterials, and machines with micrometer-scale dimensions. Two materials are studied as model systems: ultrathin SiO2 and Pt. In this thickness limit, ALD films of these materials behave elastically and can be fabricated with fJ-scale bending stiffnesses. Further, ALD membranes are utilized to design micrometer-scale mechanical metamaterials and magnetically actuated 3D devices. These results establish thin ALD films as a scalable basis for micrometer-scale actuators and robotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...