Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Med Phys ; 50(10): 6543-6553, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287315

ABSTRACT

BACKGROUND: Electron synchrotrons produce x-ray beams with dose rates orders of magnitude greater than conventional x-ray tubes and with beam sizes on the order of a few millimeters. These characteristics put severe challenges on current dosimeters to accurately realize absorbed dose or air kerma. PURPOSE: This work seeks to investigate the suitability of a novel aluminum-based calorimeter to determine absorbed dose to water with an uncertainty significantly smaller than currently possible with conventional detectors. A lower uncertainty in the determination of absolute dose rate would impact both therapeutic applications of synchrotron-produced x-ray beams and research investigations. METHODS: A vacuum-based calorimeter prototype with an aluminum core was built, matching the beam profile of the 140 keV monochromatic x-ray beam, produced by the Canadian Light Source Biomedical Imaging and Therapy beamline. The choice of material and overall calorimeter design was optimized using FEM thermal modeling software while Monte Carlo radiation transport simulations were used to model the impact of interactions of the radiation beam with the detector components. RESULTS: Corrections for both the thermal conduction and radiation transport effects were of the order of 3% and the simplicity of the geometry, combined with the monochromatic nature of the incident x-ray beam, meant that the uncertainty in each correction was ≤0.5%. The calorimeter performance was found to be repeatable over multiple irradiations of 1 Gy at the ± 0.6% level, and no systematic dependence on environmental effects or total dose was observed. CONCLUSION: The combined standard uncertainty in the determination of absorbed dose to aluminum was estimated to be 0.8%, indicating that absorbed dose to water, the ultimate quantity of interest, could be determined with an uncertainty on the order of 1%. This value is an improvement over current techniques used for synchrotron dosimetry and comparable with the state-of-the art for conventional kV x-ray dosimetry.


Subject(s)
Aluminum , Synchrotrons , X-Rays , Canada , Radiometry/methods , Water , Monte Carlo Method
2.
Med Phys ; 44(12): 6641-6646, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28913919

ABSTRACT

PURPOSE: To investigate the use of cylindrical chambers for electron beam dosimetry independent of energy by studying the variability of relative ion chamber perturbation corrections, one of the main concerns for electron beam dosimetry with cylindrical chambers. METHODS: Measurements are made with sets of cylindrical and plane-parallel reference-class chambers as a function of depth in water in 8 MeV and 18 MeV electron beams. The ratio of chamber readings for similar chambers is normalized in a high-energy electron beam and can be thought of as relative perturbation corrections. Data are plotted as a function of mean electron energy at depth for a range of depths close to the phantom surface to R80 , the depth at which the ionization falls to 80% of its maximum value. Additional, similar measurements are made in a Virtual Water® phantom with cylindrical chambers at the reference depth in a 4 MeV electron beam. RESULTS: The variability of relative ion chamber perturbation corrections for nominally identical cylindrical Farmer-type chambers is found to be less than 0.4%, no worse than plane-parallel chambers with similar specifications. CONCLUSIONS: This work discusses several issues related to the use of plane-parallel ion chambers and suggests that reference-class cylindrical chambers may be appropriate for reference dosimetry of all electron beams. This would simplify the reference dosimetry procedure and improve accuracy of beam calibration.


Subject(s)
Electrons , Radiometry/instrumentation , Radiometry/standards , Phantoms, Imaging , Plastics , Reference Standards
3.
Med Phys ; 44(10): 5433-5444, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28688120

ABSTRACT

PURPOSE: To provide results of water calorimetry and ion chamber measurements in high-energy electron beams carried out at the National Research Council Canada (NRC). There are three main aspects to this work: (a) investigation of the behavior of ionization chambers in electron beams of different energies with focus on long-term stability, (b) water calorimetry measurements to determine absorbed dose to water in high-energy beams for direct calibration of ion chambers, and (c) using measurements of chamber response relative to reference ion chambers, determination of beam quality conversion factors, kQ , for several ion chamber types. METHODS: Measurements are made in electron beams with energies between 8 MeV and 22 MeV from the NRC Elekta Precise clinical linear accelerator. Ion chamber measurements are made as a function of depth for cylindrical and plane-parallel ion chambers over a period of five years to investigate the stability of ion chamber response and for indirect calibration. Water calorimetry measurements are made in 18 MeV and 22 MeV beams. An insulated enclosure with fine temperature control is used to maintain a constant temperature (drifts less than 0.1 mK/min) of the calorimeter phantom at 4°C to minimize effects from convection. Two vessels of different designs are used with calibrated thermistor probes to measure radiation induced temperature rise. The vessels are filled with high-purity water and saturated with H2 or N2 gas to minimize the effect of radiochemical reactions on the measured temperature rise. A set of secondary standard ion chambers are calibrated directly against the calorimeter. Finally, several other ion chambers are calibrated in the NRC 60 Co reference field and then cross-calibrated against the secondary standard chambers in electron beams to realize kQ factors. RESULTS: The long-term stability of the cylindrical ion chambers in electron beams is better (always <0.15%) than plane-parallel chambers (0.2% to 0.4%). Calorimetry measurements made at 22 MeV with two different vessel geometries are consistent within 0.2% after correction for the vessel perturbation. Measurements of absorbed dose calibration coefficients for the same secondary standard chamber separated in time by 10 yr are within 0.2%. Drifts in linac output that would affect the transfer of the standard are mitigated to the 0.1% level by performing daily ion chamber normalization measurements. Calibration coefficients for secondary standard ion chambers can be achieved with uncertainties less than 0.4% (k = 1) in high-energy electron beams. The additional uncertainty in deriving calibration coefficients for well-behaved chambers indirectly against the secondary standard reference chambers is negligible. The kQ factors measured here differ by up to 1.3% compared to those in TG-51, an important change for reference dosimetry measurements. CONCLUSIONS: The measurements made here of kQ factors for eight plane-parallel and six cylindrical ion chambers will impact future updates of reference dosimetry protocols by providing some of the highest quality measurements of this crucial dosimetric parameter.


Subject(s)
Calorimetry , Electrons , Water , Calibration , Quality Control , Radiometry , Temperature , Uncertainty
4.
Med Phys ; 44(7): 3839-3847, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28477371

ABSTRACT

PURPOSE: The purpose of this study was to experimentally examine the reliability of the gradient chamber alignment point (gCAP) determination method for accurately identifying water surface location with a range of ionization chambers (ICs). MATERIALS AND METHODS: Twelve cylindrical ICs were scanned from depth through a water surface into air using a customized high-accuracy scanning system which allows for accurate alignment of the IC with respect to the true water surface. Thirteen other cylindrical ICs and five parallel-plate ICs were scanned using a standard commercially available scanning system. The thirty different ICs used in this study represent 22 different IC models. Measurements were taken with different radiation field parameters such as incident photon beam energies and field sizes. The effects of scan direction and water surface tension were also investigated. The depth at which the gradient of the relative ionization was maximized and discontinuous, the gCAP, was found for each curve. Each measured gCAP depth was compared with the theoretically expected gCAP location, the depth at which the submerged IC outer radius (OR) coincides with the water surface. RESULTS: When scanning an IC from in water to air, the only parameter that affects the gCAP location is the IC OR. The gCAP location corresponds with the IC central axis positioned at a depth equal to the IC OR within the 0.1 mm measurement scan resolution for all eighteen ICs studied with the commercially available system. Using the customized scanning system, all but three ICs were identified exhibiting a gCAP within the scan resolution, with the other three within 0.25 mm of the expected location. This discrepancy was not observed in the same IC model when using the conventional scanning system. Altering the beam energy from 6 to 25 MV did not alter the gCAP location, nor did variations in the radiation field size or scan parameters. In-air IC response is proportional to the IC wall thickness. CONCLUSION: The water-to-air scanning method coupled with gCAP analysis identifies the alignment of the IC OR to the water surface within the scanning resolution for all ICs studied. The gCAP method can precisely and reproducibly align the physical center of a given cylindrical IC with the water surface, be applied prospectively or retrospectively, and provides the prospect for automated water surface identification for scanning systems. The gCAP method eliminates the visual subjectivity inherent to current IC-to-water surface alignment techniques, has been validated with a wide variety of commercially available ICs, and should be independent of the scanning system used for data acquisition.


Subject(s)
Radiometry , Reproducibility of Results , Water
5.
Med Phys ; 44(2): 694-702, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28133754

ABSTRACT

PURPOSE: International dosimetry protocols require measurements made with a vented ionization chamber to be corrected for the influence of air density by using the standard temperature-pressure correction factor. The effect of humidity, on the other hand, is generally ignored with the provision that the relative humidity (RH) is within certain limits (typically 20% to 80%). However, there is little experimental data in the published literature as to the true effect of humidity on modern reference-class ionization chambers. This investigation used two different radiation beams - a Co-60 irradiator and an Sr-90 check source - to examine the effect of humidity on several Farmer-type ionization chambers. METHODS: An environmental cabinet controlled the humidity. For the Co-60 beam, the irradiation was external, whereas for the Sr-90 measurements, the source itself was placed within the cabinet. Extensive measurements were carried out to ensure that the experimental setup provided reproducible readings. Four chamber types were investigated: IBA FC65-G, IBA FC65-P, PTW 30013 and Exradin A19. The different wall materials provided potentially different mechanical responses (i.e., in terms of expansion/contraction) to the water content in the air. The relative humidity was varied between 8% and 98% and measurements were made with both increasing and decreasing humidity to investigate any possible hysteresis effects. RESULTS: Measurements in Co-60 were consistent with the published data obtained with primary standard cavity chambers in ICRU Report 31 (i.e., a very small variation <0.1% for RH >10%). The measurements in the Sr-90 field showed no dependence with the relative humidity, within the measurement uncertainties (0.05%, k = 1). Very good repeatability of the ionization current was obtained over successive wet/dry cycles, no hysteresis was observed, and there was no dependence on chamber type. CONCLUSION: These results indicate that humidity has no significant effect on these particular types of ionization chambers, consistent with recommendations in current megavoltage dosimetry protocols.


Subject(s)
Humidity , Radiometry/standards , Radiometry/instrumentation , Reference Standards , Temperature , Uncertainty
6.
Med Phys ; 43(2): 783-95, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26843241

ABSTRACT

PURPOSE: Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. METHODS: The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation-maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers a short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior-superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a (22)Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. RESULTS: The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. CONCLUSIONS: PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.


Subject(s)
Lung Neoplasms/radiotherapy , Radiotherapy, Computer-Assisted/methods , Respiration , Algorithms , Humans , Lung Neoplasms/physiopathology , Movement , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy, Computer-Assisted/instrumentation , Software
8.
Med Phys ; 37(5): 2179-93, 2010 May.
Article in English | MEDLINE | ID: mdl-20527552

ABSTRACT

PURPOSE: Absorbed dose beam quality conversion factors (k(Q) factors) were obtained for 27 different types of ionization chamber. The aim was to obtain objective evidence on the performance of a wide range of chambers currently available, and potentially used for reference dosimetry, and to investigate the accuracy of the k(Q) calculation algorithm used in the TG-51 protocol. METHODS: Measurements were made using the 60Co irradiator and Elekta Precise linac facilities at the National Research Council of Canada. The objective was to characterize the chambers over the range of energies applicable to TG-51 and determine whether each chamber met the requirements of a reference-class instrument. Chamber settling, leakage current, ion recombination and polarity, and waterproofing sleeve effects were investigated, and absorbed dose calibration coefficients were obtained for 60Co and 6, 10, and 25 MV photon beams. Only thimble-type chambers were considered in this investigation and were classified into three groups: (i) Reference chambers ("standard" 0.6 cm3 Farmer-type chambers and their derivatives traditionally used for beam output calibration); (ii) scanning chambers (typically 0.1 cm3 volume chambers used for beam commissioning with 3-D scanning phantoms); and (iii) microchambers (very small volume ion chambers (< or = 0.01 cm3) used for small field dosimetry). RESULTS: As might be expected, 0.6 cm3 thimble chambers showed the most predictable performance and experimental k(Q) factors were obtained with a relative uncertainty of 0.1%. The performance of scanning and microchambers was somewhat variable. Some chambers showed very good behavior but others showed anomalous polarity and recombination corrections that are not fully explained at present. For the well-behaved chambers, agreement between measured and calculated k(Q) factors was within 0.4%; for some chambers, differences of more than 1% were seen that may be related to the recombination/polarity results. Use of such chambers could result in significant errors in the determination of reference dose in the clinic. CONCLUSIONS: Based on the experimental evidence obtained here, specification for a reference-class ionization chamber could be developed that would minimize the error in using a dosimetry protocol with calculated beam quality conversion factors. The experimental k(Q) data obtained here for a wide range of thimble chambers can be used when choosing suitable detectors for reference dosimetry and are intended to be used in the upcoming update/addendum to the AAPM TG-51 dosimetry protocol.


Subject(s)
Photons , Radiation Dosage , Radiometry/instrumentation , Calibration , Linear Models , Radiometry/standards , Reference Standards
10.
Med Phys ; 37(3): 1161-3, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20384252

ABSTRACT

PURPOSE: Verify experimentally the theoretical prediction of F. Tessier and I. Kawrakow [Med. Phys. 37, 96-107 (2010)] that it is possible to design a thimble ionization chamber with no shift in its effective point of measurement (EPOM), i.e., a chamber that provides a measure of the dose to the medium at the location of its central axis. METHODS: Measure dose from a 25 MV photon beam incident on water with an Exradin A1SL ionization chamber inside a thin sleeve (as a means of effectively increasing the thimble wall thickness). The depth-dose curve is compared to that obtained using a well-characterized PTW Roos parallel-plate chamber. RESULTS: With an appropriate increase in thimble wall thickness, the EPOM shift of the Exradin A1SL vanishes. Further increase of the wall thickness yields a chamber with a positive (downstream) shift in its point of measurement. CONCLUSIONS: It is possible to design a thimble ionization chamber with a zero EPOM shift by adjusting the wall thickness.


Subject(s)
Radiometry/instrumentation , Equipment Design , Equipment Failure Analysis , Ions , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...