Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 95(5): 2222-2232, 2017 May.
Article in English | MEDLINE | ID: mdl-28727021

ABSTRACT

Poor maternal nutrition during gestation has been linked to poor growth and development, metabolic dysfunction, impaired health, and reduced productivity of offspring in many species. Poor maternal nutrition can be defined as an excess or restriction of overall nutrients or specific macro- or micronutrients in the diet of the mother during gestation. Interestingly, there are several reports that both restricted- and over-feeding during gestation negatively affect offspring postnatal growth with reduced muscle and bone deposition, increased adipose accumulation, and metabolic dysregulation through reduced leptin and insulin sensitivity. Our laboratory and others have used experimental models of restricted- and over-feeding during gestation to evaluate effects on early postnatal growth of offspring. Restricted- and over-feeding during gestation alters body size, circulating growth factors, and metabolic hormones in offspring postnatally. Both restricted- and over-feeding alter muscle growth, increase lipid content in the muscle, and cause changes in expression of myogenic factors. Although the negative effects of poor maternal nutrition on offspring growth have been well characterized in recent years, the mechanisms contributing to these changes are not well established. Our laboratory has focused on elucidating these mechanisms by evaluating changes in gene and protein expression, and stem cell function. Through RNA-Seq analysis, we observed changes in expression of genes involved in protein synthesis, metabolism, cell function, and signal transduction in muscle tissue. We recently reported that satellite cells, muscle stem cells, have altered expression of myogenic factors in offspring from restricted-fed mothers. Bone marrow derived mesenchymal stem cells, multipotent cells that contribute to development and maintenance of several tissues including bone, muscle, and adipose, have a 50% reduction in cell proliferation and altered metabolism in offspring from both restricted- and over-fed mothers. These findings indicate that poor maternal nutrition may alter offspring postnatal growth by programming stem cell populations. In conclusion, poor maternal nutrition during gestation negatively affects offspring postnatal growth, potentially through impaired stem and satellite cell function. Therefore, determining the mechanisms that contribute to fetal programming is critical to identifying effective management interventions for these offspring and improving efficiency of production.


Subject(s)
Fetal Development , Prenatal Nutritional Physiological Phenomena , Sheep/embryology , Adiposity , Animals , Animals, Newborn , Diet/veterinary , Female , Muscle Development , Myoblasts , Pregnancy , Sheep/physiology
2.
Reprod Domest Anim ; 52(4): 649-654, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28332740

ABSTRACT

To determine the effects of poor maternal nutrition and litter size on foetal growth during mid-gestation, pregnant ewes (n = 82) were fed 100%, 60% or 140% of NRC TDN beginning at day 30.2 ± 0.2 of gestation. Transabdominal ultrasound was performed weekly between day 46.0 ± 0.4 and 86.0 ± 0.7 to monitor foetal heart width (HW), umbilical diameter (UMB), rib width (RW) and placentome outer (OD) and inner diameter (ID). Data were analysed with repeated-measures using the mixed procedure for effects of maternal diet, litter size and gestation, and equations predictive of gestational age were generated using the regression procedure. To determine the agreement of ultrasound measurement and actual size, ewes (n = 20-21) were euthanized at day 45 or 90 to obtain corresponding postmortem measurements for Bland-Altman analysis. The HW, UMB and placentome OD and ID increased with gestation (p < .0001) but were unaffected by maternal diet or litter size (p ≥ .12). Ultrasound underestimated postmortem measurements of HW (14.8%), UMB (7.3%), placentome OD (4.5%) and ID (37.3%) at day 90 of gestation. Ultrasound underestimated RW at day 45 (7.7%) but overestimated RW (23.8%) at day 90, indicating inconsistent bias when reporting RW by ultrasound. Combining the HW, UMB, RW and placentome OD generated the strongest equation predictive of gestational age (R2  = .91). These findings indicate that during mid-gestation, maternal diet or litter size did not affect HW, UMB or placentome diameters and these factors can be used to estimate gestational age.


Subject(s)
Fetus/diagnostic imaging , Gestational Age , Maternal Nutritional Physiological Phenomena , Sheep , Ultrasonography/methods , Animals , Female , Fetal Development , Heart/diagnostic imaging , Litter Size , Organ Size , Placenta/diagnostic imaging , Pregnancy , Umbilical Cord/diagnostic imaging
3.
Transl Anim Sci ; 1(1): 16-25, 2017 Feb.
Article in English | MEDLINE | ID: mdl-32704626

ABSTRACT

To determine the effects of poor maternal nutrition on offspring body and organ growth during gestation, pregnant Western White-faced ewes (n = 82) were randomly assigned into a 3 × 4 factorial treatment structure at d 30.2 ± 0.2 of gestation (n = 5 to 7 ewes per treatment). Ewes were individually fed 100% (control), 60% (restricted) or 140% (over) of NRC requirements for TDN. Ewes were euthanized at d 45, 90 or 135 of gestation or underwent parturition (birth) and tissues were collected from the offspring (n = 10 to 15 offspring per treatment). Offspring from control, restricted and overfed ewes are referred to as CON, RES and OVER, respectively. Ewe data were analyzed as a completely randomized design and offspring data were analyzed as a split-plot design using PROC MIXED. Ewe BW did not differ at d 30 (P ≥ 0.43), however restricted ewes weighed less than overfed and overfed were heavier than controls at d 45, and restricted weighed less and overfed were heavier than controls at d 90 and 135 and birth (P ≤ 0.05). Ewe BCS was similar at d 30, 45 and 90 (P ≤ 0.07), however restricted ewes scored lower than control at d 135 and birth (P ≤ 0.05) and over ewes scored higher than control at d 135 (P ≤ 0.05) but not at birth (P = 0.06). A maternal diet by day of gestation interaction indicated that at birth the body weight (BW) of RES offspring was less than CON and OVER (P ≤ 0.04) and heart girth of RES was smaller than CON and OVER (P ≤ 0.004). There was no interaction of maternal diet and day of gestation on crown-rump, fetal, or nose occipital length, or orbit or umbilical diam. (P ≥ 0.31). A main effect of maternal diet indicated that the RES crown-rump length was shorter than CON and OVER (P ≤ 0.05). An interaction was observed for liver, kidney and renal fat (P ≤ 0.02). At d 45 the liver of RES offspring was larger than CON and OVER (P ≤ 0.002), but no differences observed at d 90, 135 or birth (P ≥ 0.07). At d 45, the kidneys of OVER offspring were larger than CON and RES (P ≤ 0.04), but no differences observed at d 90, 135 or birth (P ≥ 0.60). At d 135, OVER had more perirenal fat than CON and RES (P ≤ 0.03), and at birth RES had more perirenal fat than CON and OVER (P ≤ 0.04). There was no interaction observed for offspring heart weight, length or width, kidney length, adrenal gland weight, loin eye area or rib width (P ≥ 0.09). In conclusion, poor maternal nutrition differentially alters offspring body size and organ growth depending on the stage of gestation.

4.
J Dairy Sci ; 97(7): 4322-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24767885

ABSTRACT

To increase our understanding of the mechanisms by which growth hormone (GH) and insulin-like growth factor (IGF)-I influence bovine mammary gland development, the potential roles of T-box2 (TBX2) and T-box3 (TBX3) were investigated. Although no information regarding expression of either transcription factor in the bovine mammary gland exists, it is known that TBX3 and its closely related family member, TBX2, are required for mammary gland development in humans and mice. Additionally, TBX3 mutations in humans and mice lead to ulnar mammary syndrome. Evidence is present in bone that TBX3 is required for proliferation and its expression is regulated by GH, an important regulator of mammary gland development and milk production. We hypothesized that TBX2 and TBX3 are expressed in the bovine mammary gland and that GH, IGF-I, or both increase TBX2 and TBX3 expression in bovine mammary epithelial cells (MEC). Bovine mammary gland tissue, MAC-T cells, primary MEC, and fibroblasts were obtained and TBX2 and TBX3 expression was determined by real-time reverse transcription PCR. In addition, TBX2 and TBX3 expression was examined in cells treated with 100 or 500 ng/mL of GH or 100 or 200 ng/mL of IGF-I for 24 or 48 h. Both TBX2 and TBX3 were expressed in bovine mammary tissue. Surprisingly, expression of TBX2 was only detected in mammary fibroblast cells, whereas TBX3 was expressed in all 3 cell types. Growth hormone did not alter TBX3 expression in MAC-T cells or MEC. However, IGF-I increased TBX3 expression in MAC-T, but not in primary MEC. We did not observe a change in TBX2 or TBX3 expression in fibroblasts treated with GH and IGF. Therefore, we concluded that (1) TBX2 and TBX3 are expressed in bovine mammary gland, (2) their expression is cell-type specific, and (3) IGF-I stimulates TBX3 expression in MAC-T cells.


Subject(s)
Cattle/physiology , Growth Hormone/genetics , T-Box Domain Proteins/genetics , Animals , Epithelial Cells , Female , Fibroblasts , Insulin-Like Growth Factor I/genetics , Mammary Glands, Animal , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...