Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Cent Sci ; 9(7): 1400-1408, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37521794

ABSTRACT

The Click Activated Protodrugs Against Cancer (CAPAC) platform enables the activation of powerful cancer drugs at tumors. CAPAC utilizes a click chemistry reaction between tetrazine and trans-cyclooctene. The reaction between activator, linked to a tumor-targeting agent, and protodrug leads to the targeted activation of the drug. Here, tumor targeting is achieved by intratumoral injection of a tetrazine-modified hyaluronate (SQL70) or by infusion of a tetrazine-modified HER2-targeting antigen-binding fragment (SQT01). Monomethyl auristatin E (a cytotoxin hindered in its clinical use by severe toxicity) was modified with a trans-cyclooctene to form the protodrug SQP22, which reduced its cytotoxicity in vitro and in vivo. Treatment of SQP22 paired with SQL70 demonstrated antitumor effects in Karpas 299 and RENCA murine tumor models, establishing the requirement of click chemistry for protodrug activation. SQP22 paired with SQT01 induced antitumor effects in the HER2-positive NCI-N87 xenograft model, showing that tumor-targeted activation could be accomplished via systemic dosing. Observed toxicities were limited, with transient myelosuppression and moderate body weight loss detected. This study highlights the capabilities of the CAPAC platform by demonstrating the activity of SQP22 with two differentiated targeting approaches and underscores the power of click chemistry to precisely control the activation of drugs at tumors.

2.
Mol Cancer Ther ; 17(1): 161-168, 2018 01.
Article in English | MEDLINE | ID: mdl-29142069

ABSTRACT

Hematologically derived tumors make up ∼10% of all newly diagnosed cancer cases in the United States. Of these, the non-Hodgkin lymphoma (NHL) designation describes a diverse group of cancers that collectively rank among the top 10 most commonly diagnosed cancers worldwide. Although long-term survival trends are improving, there remains a significant unmet clinical need for treatments to help patients with relapsed or refractory disease, one cause of which is drug efflux through upregulation of xenobiotic pumps, such as MDR1. CD22 is a clinically validated target for the treatment of NHL, but no anti-CD22 agents have yet been approved for this indication. Recent approval of an anti-CD22 antibody-drug conjugate (ADC) for the treatment of relapsed/refractory ALL supports the rationale for targeting this protein. An opportunity exists for a next-generation anti-CD22 antibody-drug conjugate (ADC) to address unmet medical needs in the relapsed/refractory NHL population. We describe a site-specifically conjugated antibody-drug conjugate, made using aldehyde tag technology, targeted against CD22 and bearing a noncleavable maytansine payload that is resistant to MDR1-mediated efflux. The construct was efficacious against CD22+ NHL xenografts and could be repeatedly dosed in cynomolgus monkeys at 60 mg/kg with no observed significantly adverse effects. Exposure to total ADC at these doses (as assessed by AUC0-inf) indicated that the exposure needed to achieve efficacy was below tolerable limits. Together, the data suggest that this drug has the potential to be used effectively in patients with CD22+ tumors that have developed MDR1-related resistance to prior therapies. Mol Cancer Ther; 17(1); 161-8. ©2017 AACR.


Subject(s)
Immunoconjugates/pharmacology , Maytansine/administration & dosage , Sialic Acid Binding Ig-like Lectin 2/immunology , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Animals , Drug Resistance, Neoplasm , Female , Humans , Macaca fascicularis , Male , Mice , Rats , Rats, Sprague-Dawley
3.
ACS Med Chem Lett ; 7(11): 994-998, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27882197

ABSTRACT

Expanded ligation techniques are sorely needed to generate unique linkages for the growing field of functionally enhanced proteins. To address this need, we present a unique chemical ligation that involves the double addition of a pyrazolone moiety with an aldehyde-labeled protein. This ligation occurs via a tandem Knoevenagel condensation-Michael addition. A pyrazolone reacts with an aldehyde to generate an enone, which undergoes subsequent attack by a second pyrazolone to generate a bis-pyrazolone species. This rapid and facile ligation technique is performed under mild conditions in the absence of catalyst to generate new architectures that were previously inaccessible via conventional ligation reactions. Using this unique ligation, we generated three site-specifically labeled antibody-drug conjugates (ADCs) with an average of four drugs to one antibody. The in vitro and in vivo efficacies along with pharmacokinetic data of the site-specific ADCs are reported.

4.
Nat Chem Biol ; 11(7): 525-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006010

ABSTRACT

Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo.


Subject(s)
Acrylamides/pharmacokinetics , B-Lymphocytes/drug effects , Cyanoacrylates/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Acrylamides/chemical synthesis , Agammaglobulinaemia Tyrosine Kinase , Animals , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Cell Line, Tumor , Crystallography, X-Ray , Cyanoacrylates/chemical synthesis , Dasatinib , Female , Gene Expression , Humans , Ligands , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sf9 Cells , Spodoptera , Structure-Activity Relationship , Substrate Specificity , Thiazoles/pharmacokinetics , Time Factors
5.
J Am Chem Soc ; 136(31): 10850-3, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25029632

ABSTRACT

Expansion of antibody scaffold diversity has the potential to expand the neutralizing capacity of the immune system and to generate enhanced therapeutics and probes. Systematic exploration of scaffold diversity could be facilitated with a modular and chemical scaffold for assembling proteins, such as DNA. However, such efforts require simple, modular, and site-specific methods for coupling antibody fragments or bioactive proteins to nucleic acids. To address this need, we report a modular approach for conjugating synthetic oligonucleotides to proteins with aldehyde tags at either terminus or internal loops. The resulting conjugates are assembled onto DNA-based scaffolds with low nanometer spatial resolution and can bind to live cells. Thus, this modular and site-specific conjugation strategy provides a new tool for exploring the potential of expanded scaffold diversity in immunoglobulin-based probes and therapeutics.


Subject(s)
Aldehydes/chemistry , DNA/chemistry , Proteins/chemistry , Binding Sites , Cell Line, Tumor , DNA/metabolism , Humans , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism , Proteins/metabolism , Substrate Specificity
6.
Nat Chem Biol ; 8(5): 471-6, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22466421

ABSTRACT

Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we show that electron-deficient olefins, including acrylamides, can be tuned to react with cysteine thiols in a rapidly reversible manner. Installation of a nitrile group increased the olefins' intrinsic reactivity, but, paradoxically, eliminated the formation of irreversible adducts. Incorporation of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted cysteine. Disruption of these interactions by protein unfolding or proteolysis promoted instantaneous cleavage of the covalent bond. Our results establish a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins and peptides.


Subject(s)
Acrylamides/chemistry , Alkenes/chemistry , Cysteine/chemistry , Nitriles/chemistry , Protein Unfolding , Proteolysis , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Sulfhydryl Compounds/chemistry
7.
J Am Chem Soc ; 132(17): 6068-74, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20392093

ABSTRACT

Self-assembling, light harvesting arrays of organic chromophores can be templated using the tobacco mosaic virus coat protein (TMVP). The efficiency of energy transfer within systems containing a high ratio of donors to acceptors shows a strong dependence on the TMVP assembly state. Rod and disk assemblies derived from a single stock of chromophore-labeled protein exhibit drastically different levels of energy transfer, with rods significantly outperforming disks. The origin of the superior transfer efficiency was probed through the controlled introduction of photoinactive conjugates into the assemblies. The efficiency of the rods showed a linear dependence on the proportion of deactivated chromophores, suggesting the availability of redundant energy transfer pathways that can circumvent defect sites. Similar disk-based systems were markedly less efficient at all defect levels. To examine these differences further, the brightness of donor-only systems was measured as a function of defect incorporation. In rod assemblies, the photophysical properties of the donor chromophores showed a significant dependence on the number of defects. These differences can be partly attributed to vertical energy transfer events in rods that occur more rapidly than the horizontal transfers in disks. Using these geometries and the previously measured energy transfer rates, computational models were developed to understand this behavior in more detail and to guide the optimization of future systems. These simulations have revealed that significant differences in excited state dissipation rates likely also contribute to the greater efficiency of the rods and that statistical variations in the assembly process play a more minor role.


Subject(s)
Capsid Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Tobacco Mosaic Virus/chemistry , Energy Transfer , Light , Photobleaching , Protein Array Analysis
8.
J Am Chem Soc ; 131(17): 6301-8, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19366262

ABSTRACT

Significant improvements have been made to a previously reported tryptophan modification method using rhodium carbenoids in aqueous solution, allowing the reaction to proceed at pH 6-7. This technique is based on the discovery that N-(tert-butyl)hydroxylamine promotes indole modification with rhodium carbenoids over a broad pH range (2-7). This methodology was demonstrated on peptide and protein substrates, generally yielding 40-60% conversion with excellent tryptophan chemoselectivity. The solvent accessibility of the indole side chains was found to be a key factor in successful carbenoid addition, as demonstrated by conducting the reaction at temperatures high enough to cause thermal denaturation of the protein substrate. Progress toward the expression of proteins bearing solvent accessible tryptophan residues as reactive handles for modification with rhodium carbenoids is also reported.


Subject(s)
Methane/analogs & derivatives , Organometallic Compounds/chemistry , Rhodium/chemistry , Tryptophan/chemistry , Hydrogen-Ion Concentration , Methane/chemistry , Models, Molecular , Organometallic Compounds/chemical synthesis , Solutions , Solvents/chemistry , Water/chemistry
9.
J Am Chem Soc ; 130(24): 7639-44, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18498164

ABSTRACT

A three-component Mannich-type electrophilic aromatic substitution reaction was previously developed to target the phenolic side chain of tyrosine residues on proteins. This reaction proceeds under mild conditions and provides a convenient alternative to lysine-targeting strategies. However, the use of reactive aldehydes, such as formaldehyde, warrants careful inspection of the reaction products to ensure that other modifications have not occurred. Through the use of isotopically enriched reagents, nuclear magnetic resonance (NMR)-based studies were used to obtain structural confirmation of the tyrosine-modification products. These experiments also revealed the formation of a reaction byproduct arising from the indole ring of tryptophan residues. Cysteine residues were shown to not participate in the reaction, except in the case of a reduced disulfide, which formed a dithioacetal. We anticipate that this analysis method will prove useful for the detailed study of a number of bioconjugation reactions.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Tryptophan/analysis , Tyrosine/analysis , Carbon Radioisotopes/chemistry , Chymotrypsinogen/chemistry , Cysteine/analysis , Formaldehyde/chemistry , Humans , Isotope Labeling , Muramidase/chemistry , Papain/chemistry , Protein Conformation , Thioredoxins/chemistry
10.
J Am Chem Soc ; 127(39): 13490-1, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16190700

ABSTRACT

An efficient transition metal catalyzed procedure for the reductive alkylation of proteins has been developed. Imines formed from the condensation of aldehydes (1 mM) with lysine residues and the N-terminus can be reduced efficiently by a [Cp*Ir(4,4'-dimethoxy-2,2'-bipyridine)(H2O)]SO4 catalyst in the presence of formate ions. The reaction proceeds readily at pH 7.4 in aqueous phosphate buffer at temperatures ranging from 22 to 37 degrees C, and reaches high levels of conversion for a number of aromatic aldehydes. UV experiments have confirmed that the catalyst does not bind to protein substrates. The utility of the reaction has been demonstrated through an efficient two-step procedure for the attachment of unfunctionalized poly(ethylene glycol) to protein targets.


Subject(s)
Hydrogen/chemistry , Iridium/chemistry , Proteins/chemistry , Alkylation , Amino Acid Sequence , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...