Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Ecol Appl ; 32(7): e2679, 2022 10.
Article in English | MEDLINE | ID: mdl-35588285

ABSTRACT

For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species-season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.


Subject(s)
Animal Migration , Birds , Animals , Seasons , South America
2.
Ecotoxicology ; 29(8): 1174-1182, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31520201

ABSTRACT

We investigated mercury (Hg) blood concentrations in Bicknell's thrush (Catharus bicknelli) and Swainson's thrush (C. ustulatus), congeneric long-distance migratory songbirds, from 2000-2017 at a montane forest site in north-central Vermont. We analyzed variation in blood Hg of both species using mixed-effects models, incorporating atmospheric wet Hg deposition data from a nearby sampling location. Although Hg deposition varied among years and seasonally, we detected no temporal trend in either atmospheric deposition or blood Hg, nor evidence of a relationship between the two. Sampling date had the strongest effect on blood Hg concentration, which declined seasonally, followed by age and sex of the individual. The data did not support an effect of species. We believe that the absence of a clear relationship between local atmospheric deposition and thrush blood Hg concentrations suggests that Hg cycling dynamics, mechanisms of transfer, and timing of uptake by montane forest biota are complex and poorly understood. The blood Hg concentrations of ~0.07-0.1 µg/g we documented in Bicknell's and Swainson's thrush are below those found to negatively impact physiological or reproductive endpoints in other invertivorous terrestrial passerines. To better evaluate the validity of Bicknell's thrush as a bioindicator of MeHg availability in montane forest ecosystems, we recommend (1) effects-based investigations, (2) a more robust understanding of Hg and MeHg cycling, (3) more clear geospatial and temporal links between Hg deposition and biotic uptake, and (4) more thorough documentation of Hg burdens across the species' annual cycle.


Subject(s)
Environmental Monitoring , Environmental Pollutants/blood , Mercury/blood , Passeriformes/blood , Animal Migration , Animals , Birds , Vermont
3.
J Anim Ecol ; 89(1): 207-220, 2020 01.
Article in English | MEDLINE | ID: mdl-30771254

ABSTRACT

Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.


Subject(s)
Animal Migration , Birds , Animals , Phylogeny , Publication Bias , Seasons
4.
Sci Total Environ ; 665: 1125-1134, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30893744

ABSTRACT

The soils and food webs associated with mid to high elevation, forested, headwater streams in northeastern North America are potential hotspots for mercury (Hg) methylation and bioaccumulation, but are not well studied. Our goals were to quantify total Hg (THg) and methyl Hg (MeHg) concentrations in soils and terrestrial food webs associated with headwater streams of northern hardwood forests to identify predictors of small-scale spatial variation in Hg bioaccumulation. We sampled soil characteristics that promote Hg methylation including pH, sulfur and calcium content, and organic matter. To assess spatial variation, we sampled at high (~700 m asl) and mid elevations (~500 m asl), both adjacent to (<1 m) and away from (>75 m) three replicate headwater streams in each of two watersheds of the White Mountains region, New Hampshire, USA. Soils of these forested watersheds differed significantly in pH and the content of calcium, sulfur, organic matter and THg. Conditions for methylation were more favorable in the upland forest sites compared to streamside sites. Significant bioaccumulation of THg occurred in all measured components of the food web, including insects, spiders, salamanders, and birds. Trophic position, as determined by δ15N, was the best predictor of both THg and MeHg bioaccumulation across the sampled taxa and was also a better predictor than spatial location. However, the degree of bioaccumulation at which MeHg significantly affects animal behavior, reproduction or survival is unknown for most taxa in terrestrial habitats, particularly for invertebrates. These findings show that Hg methylation and bioaccumulation is not limited to areas traditionally classified as wetlands or to areas with exceptionally high THg inputs, but that it is a widespread and important phenomenon in the moist deciduous forests of eastern North America.


Subject(s)
Food Chain , Invertebrates/physiology , Mercury Compounds/metabolism , Mercury/metabolism , Vertebrates/physiology , Water Pollutants, Chemical/metabolism , Animals , Aquatic Organisms/physiology , Forests , Methylation , New Hampshire , Rivers
5.
Biol Lett ; 14(12): 20180741, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30958242

ABSTRACT

Insect migration is globally ubiquitous and can involve continental-scale movements and complex life histories. Apart from select species of migratory moths and butterflies, little is known about the structure of the annual cycle for migratory insects. Using stable-hydrogen isotope analysis of 852 wing samples from eight countries spanning 140 years, combined with 21 years of citizen science data, we determined the full annual cycle of a large migratory dragonfly, the common green darner ( Anax junius). We demonstrate that darners undertake complex long-distance annual migrations governed largely by temperature that involve at least three generations. In spring, the first generation makes a long-distance northbound movement (further than 650 km) from southern to northern range limits, lays eggs and dies. A second generation emerges and returns south (further than 680 km), where they lay eggs and die. Finally, a third resident generation emerges, reproducing locally and giving rise to the cohort that migrates north the following spring. Since migration timing and nymph development are highly dependent on temperature, continued climate change could lead to fundamental changes in the biology for this and similar migratory insects.


Subject(s)
Animal Migration , Life Cycle Stages , Odonata/physiology , Animals , Hydrogen , Isotopes , North America , Odonata/growth & development , Seasons
6.
Insects ; 8(2)2017 Jun 04.
Article in English | MEDLINE | ID: mdl-28587223

ABSTRACT

We conducted point counts in the alpine zone of the Presidential Range of the White Mountains, New Hampshire, USA, to estimate the distribution and density of the rare endemic White Mountain Fritillary (Boloria chariclea montinus). Incidence of occurrence and density of the endemic White Mountain Fritillary during surveys in 2012 and 2013 were greatest in the herbaceous-snowbank plant community. Densities at points in the heath-shrub-rush plant community were lower, but because this plant community is more widespread in the alpine zone, it likely supports the bulk of adult fritillaries. White Mountain Fritillary used cushion-tussock, the other alpine plant community suspected of providing habitat, only sparingly. Detectability of White Mountain Fritillaries varied as a consequence of weather conditions during the survey and among observers, suggesting that raw counts yield biased estimates of density and abundance. Point counts, commonly used to study and monitor populations of birds, were an effective means of sampling White Mountain Fritillary in the alpine environment where patches of habitat are small, irregularly shaped, and widely spaced, rendering line-transect methods inefficient and difficult to implement.

7.
Insects ; 8(2)2017 May 18.
Article in English | MEDLINE | ID: mdl-28524117

ABSTRACT

Data collection, storage, analysis, visualization, and dissemination are changing rapidly due to advances in new technologies driven by computer science and universal access to the internet. These technologies and web connections place human observers front and center in citizen science-driven research and are critical in generating new discoveries and innovation in such fields as astronomy, biodiversity, and meteorology. Research projects utilizing a citizen science approach address scientific problems at regional, continental, and even global scales otherwise impossible for a single lab or even a small collection of academic researchers. Here we describe eButterfly an integrative checklist-based butterfly monitoring and database web-platform that leverages the skills and knowledge of recreational butterfly enthusiasts to create a globally accessible unified database of butterfly observations across North America. Citizen scientists, conservationists, policy makers, and scientists are using eButterfly data to better understand the biological patterns of butterfly species diversity and how environmental conditions shape these patterns in space and time. eButterfly in collaboration with thousands of butterfly enthusiasts has created a near real-time butterfly data resource producing tens of thousands of observations per year open to all to share and explore.

8.
PeerJ ; 4: e1541, 2016.
Article in English | MEDLINE | ID: mdl-26844015

ABSTRACT

We analyzed temporal trends in mist-net capture rates of resident (n = 8) and overwintering Nearctic-Neotropical migrant (n = 3) bird species at two sites in montane broadleaf forest of the Sierra de Bahoruco, Dominican Republic, with the goal of providing quantitative information on population trends that could inform conservation assessments. We conducted sampling at least once annually during the winter months of January-March from 1997 to 2010. We found evidence of declines in capture rates for three resident species, including one species endemic to Hispaniola. Capture rate of Rufous-throated Solitaire (Myadestes genibarbis) declined by 3.9% per year (95% CL = 0%, 7.3%), Green-tailed Ground-Tanager (Microligea palustris) by 6.8% (95% CL = 3.9%, 8.8%), and Greater Antillean Bullfinch (Loxigilla violacea) by 4.9% (95% CL = 0.9%, 9.2%). Two rare and threatened endemics, Hispaniolan Highland-Tanager (Xenoligea montana) and Western Chat-Tanager (Calyptophilus tertius), showed statistically significant declines, but we have low confidence in these findings because trends were driven by exceptionally high capture rates in 1997 and varied between sites. Analyses that excluded data from 1997 revealed no trend in capture rate over the course of the study. We found no evidence of temporal trends in capture rates for any other residents or Nearctic-Neotropical migrants. We do not know the causes of the observed declines, nor can we conclude that these declines are not a purely local phenomenon. However, our findings, along with other recent reports of declines in these same species, suggest that a closer examination of their conservation status is warranted. Given the difficulty in obtaining spatially extensive, long-term estimates of population change for Hispaniolan birds, we suggest focusing on other metrics of vulnerability that are more easily quantified yet remain poorly described, such as extent of occurrence.

9.
Biol Lett ; 11(4): 20141045, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25832815

ABSTRACT

Many fundamental aspects of migration remain a mystery, largely due to our inability to follow small animals over vast spatial areas. For more than 50 years, it has been hypothesized that, during autumn migration, blackpoll warblers (Setophaga striata) depart northeastern North America and undertake a non-stop flight over the Atlantic Ocean to either the Greater Antilles or the northeastern coast of South America. Using miniaturized light-level geolocators, we provide the first irrefutable evidence that the blackpoll warbler, a 12 g boreal forest songbird, completes an autumn transoceanic migration ranging from 2270 to 2770 km (mean ± s.d.: 2540 ± 257) and requiring up to 3 days (62 h ± 10) of non-stop flight. This is one of the longest non-stop overwater flights recorded for a songbird and confirms what has long been believed to be one of the most extraordinary migratory feats on the planet.


Subject(s)
Animal Migration/physiology , Flight, Animal , Songbirds/physiology , Animals , Atlantic Ocean , Body Weight , Seasons , Songbirds/anatomy & histology
10.
Environ Toxicol Chem ; 33(1): 208-15, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24302165

ABSTRACT

High-elevation ecosystems of the northeastern United States are vulnerable to deposition and environmental accumulation of atmospheric pollutants, yet little work has been done to assess mercury (Hg) concentrations in organisms occupying montane ecosystems. The authors present data on Hg concentrations in ground-foraging insectivorous songbirds, a terrestrial salamander, and forest floor horizons sampled along a forested elevational gradient from 185 m to 1273 m in the Catskill Mountains, New York, USA. Mean Hg concentrations in Catharus thrushes and the salamander Plethodon cinereus increased with elevation, as did Hg concentrations in all forest floor horizons. Mean Hg concentrations in organic soils at approximately 1200 m elevation (503.5 ± 17.7 ng/g, dry wt) were 4.4-fold greater than those at approximately 200 m. Montane ecosystems of the northeastern United States, and probably elsewhere, are exposed to higher levels of atmospheric Hg deposition as reflected in accumulation patterns in the forest floor and associated high-elevation fauna. This information can be used to parameterize and test Hg transport and bioaccumulation models of landscape-specific patterns and may serve as a monitoring tool for decision makers considering future controls on Hg emissions. Further investigation is needed into the potential effects of increased Hg concentrations on high-elevation fauna.


Subject(s)
Mercury/analysis , Soil Pollutants/analysis , Songbirds/blood , Urodela , Altitude , Animals , Ecosystem , Environmental Monitoring , New York , Trees
11.
PLoS One ; 8(1): e53986, 2013.
Article in English | MEDLINE | ID: mdl-23326554

ABSTRACT

Conservation planning and implementation require identifying pertinent habitats and locations where protection and management may improve viability of targeted species. The winter range of Bicknell's Thrush (Catharus bicknelli), a threatened Nearctic-Neotropical migratory songbird, is restricted to the Greater Antilles. We analyzed winter records from the mid-1970s to 2009 to quantitatively evaluate winter distribution and habitat selection. Additionally, we conducted targeted surveys in Jamaica (n = 433), Cuba (n = 363), Dominican Republic (n = 1,000), Haiti (n = 131) and Puerto Rico (n = 242) yielding 179 sites with thrush presence. We modeled Bicknell's Thrush winter habitat selection and distribution in the Greater Antilles in Maxent version 3.3.1. using environmental predictors represented in 30 arc second study area rasters. These included nine landform, land cover and climatic variables that were thought a priori to have potentially high predictive power. We used the average training gain from ten model runs to select the best subset of predictors. Total winter precipitation, aspect and land cover, particularly broadleaf forests, emerged as important variables. A five-variable model that contained land cover, winter precipitation, aspect, slope, and elevation was the most parsimonious and not significantly different than the models with more variables. We used the best fitting model to depict potential winter habitat. Using the 10 percentile threshold (>0.25), we estimated winter habitat to cover 33,170 km(2), nearly 10% of the study area. The Dominican Republic contained half of all potential habitat (51%), followed by Cuba (15.1%), Jamaica (13.5%), Haiti (10.6%), and Puerto Rico (9.9%). Nearly one-third of the range was found to be in protected areas. By providing the first detailed predictive map of Bicknell's Thrush winter distribution, our study provides a useful tool to prioritize and direct conservation planning for this and other wet, broadleaf forest specialists in the Greater Antilles.


Subject(s)
Animal Migration/physiology , Conservation of Natural Resources , Songbirds/physiology , Animals , Climate , Cuba , Dominican Republic , Ecosystem , Environmental Monitoring , Haiti , Jamaica , Puerto Rico , Seasons
12.
Ecotoxicology ; 22(1): 86-93, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23076839

ABSTRACT

Despite growing concerns over mercury (Hg) exposure to humans and wildlife on a global scale, little is known about Hg bioaccumulation in the New World tropics. From 2005 to 2011, we monitored Hg concentrations in blood of nine avian species occupying a geographic range of tropical wet broadleaf sites on the island of Hispaniola, including eight passerines (two Nearctic-Neotropical migrant and six resident species) and one top order predatory accipiter. Invertivorous songbirds were further differentiated by foraging guild, with six species of ground-foragers and two species of foliage-gleaners. Blood Hg concentrations were orders of magnitude higher in birds sampled in central and southern cloud forest sites (1,000-1,800 m elevation) than in northern and northeastern rainforest sites (50-500 m elevation), with migratory and resident species both showing 2-20× greater blood Hg concentrations in cloud forests than in rainforests. Within cloud forest sites, ground-foraging species had higher Hg concentrations than foliage-gleaning species. Top order predatory sharp-shinned hawks (Accipiter striatus) had the highest blood Hg concentrations among all species, suggesting that Hg biomagnification is occurring in terrestrial forests of Hispaniola. Two migrant songbird species overwintering on the island had higher blood Hg concentrations than have been recorded on their North American breeding grounds. Future studies should seek to elucidate sources of variation in atmospheric Hg deposition on Hispaniola and to quantify the dynamics of Hg cycling in tropical forest ecosystems, which may differ in important ways from patterns documented in temperate forest ecosystems.


Subject(s)
Birds , Environmental Exposure , Environmental Pollutants/blood , Mercury/blood , Animal Migration , Animals , Dominican Republic , Ecosystem , Environmental Monitoring , Haiti , Songbirds , Trees
13.
Ecotoxicology ; 19(4): 697-709, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19960247

ABSTRACT

We investigated mercury (Hg) concentrations in a terrestrial food web in high elevation forests in Vermont. Hg concentrations increased from autotrophic organisms to herbivores < detritivores < omnivores < carnivores. Within the carnivores studied, raptors had higher blood Hg concentrations than their songbird prey. The Hg concentration in the blood of the focal study species, Bicknell's thrush (Catharus bicknelli), varied over the course of the summer in response to a diet shift related to changing availability of arthropod prey. The Bicknell's thrush food web is more detrital-based (with higher Hg concentrations) in early summer and more foliage-based (with lower Hg concentrations) during late summer. There were significant year effects in different ecosystem compartments indicating a possible connection between atmospheric Hg deposition, detrital-layer Hg concentrations, arthropod Hg concentrations, and passerine blood Hg concentrations.


Subject(s)
Environmental Pollutants/metabolism , Food Chain , Methylmercury Compounds/metabolism , Songbirds/metabolism , Trees , Animals , Arthropods/metabolism , Biodiversity , Body Burden , Diet , Environmental Monitoring , Environmental Pollutants/blood , Feeding Behavior , Female , Male , Methylmercury Compounds/blood , Plant Leaves/chemistry , Predatory Behavior , Raptors/metabolism , Seasons , Soil/analysis , Soil Pollutants/metabolism , Songbirds/blood , Urodela/metabolism , Vermont
14.
Ecotoxicology ; 14(1-2): 223-40, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15931968

ABSTRACT

Anthropogenic input of mercury (Hg) into the environment has elevated risk to fish and wildlife, particularly in northeastern North America. Investigations into the transfer and fate of Hg have focused on inhabitants of freshwater aquatic ecosystems, as these are the habitats at greatest risk for methylmercury (MeHg) biomagnification. Deviating from such an approach, we documented MeHg availability in a terrestrial montane ecosystem using a suite of insectivorous passerines. Intensive and extensive sampling of Bicknell's thrush (Catharus bicknelli) indicated significant heterogeneity in MeHg availability across 21 mountaintops in northeastern North America. Southern parts of the breeding range tended to be at greater risk than northern parts. Mean blood Hg concentrations for Bicknell's thrush at 21 distinct breeding sites ranged from 0.08 to 0.38 ug/g (ww) and at seven Greater Antillean wintering sites ranged from 0.03 to 0.42 ug/g (ww). Overall concentrations were significantly greater in wintering than in breeding areas. Mercury exposure profiles for four passerine species on Mt. Mansfield, Vermont indicated greatest MeHg uptake in Bicknell's thrush and yellow-rumped warbler (Dendroica coronata) and lowest in blackpoll warbler (Dendroica striata) and white-throated sparrow (Zonotrichia albicollis). The MeHg and total Hg ratio in blood in these four species was nearly 1:1. There was no correlation between blood and feather Hg concentrations in breeding Bicknell's thrush, in part because of apparent retention of winter Hg body burdens, within-season variation of MeHg availability, and confounding factors such as influences from age. Adult thrushes had significantly higher concentrations of feather Hg than did young-of-the-year. Although individual patterns of inter-year feather Hg concentrations were disordered, some individuals exhibited bioaccumulation of MeHg. Female blood Hg concentrations were significantly lower than males', in part because females have additional depurating mechanisms through eggs. Older male Bicknell's thrushes that breed in New England are therefore likely at greatest risk. Mechanisms for Hg methylation in montane areas without standing water are not yet fully understood. However, recent studies indicate that MeHg is present in forest tree leaves and leaf detritus; saturated soils and other moist microhabitats may also contribute to MeHg availability. Our finding of a correlation between regional litterfall Hg flux patterns and Bicknell's thrush blood Hg concentrations demonstrates on-site availability of MeHg. Further investigations into MeHg availability in montane environments are recommended to assess risk to insectivorous passerines, particularly the Bicknell's thrush.


Subject(s)
Mercury/pharmacokinetics , Passeriformes , Trees , Water Pollutants/pharmacokinetics , Altitude , Animals , Diet , Environmental Monitoring , Female , Insecta , Male , Mercury/analysis , New England , Ovum/chemistry , Tissue Distribution , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...