Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscientist ; 7(4): 315-24, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11488397

ABSTRACT

The thalamus has long been thought to convey subcortical information to the cortex. Indeed, models of basal ganglia function attribute the primary role for the thalamus to a simple relay of information processed in the basal ganglia to the cortex. The thalamic nuclear groups that are associated primarily with this function are the ventral anterior and ventral lateral nuclei and the mediodorsal thalamic nucleus. However, recent studies have shown that the corticothalamic projection is important for the dynamics of the thalamocortical processing. Furthermore, the relay nuclei that carry basal ganglia output to the cortex have recently been shown to project back to the basal ganglia directly. These two recent developments indicate a more dynamic role for the thalamus in basal ganglia information processing than a passive relay.


Subject(s)
Basal Ganglia/physiology , Frontal Lobe/physiology , Thalamus/physiology , Animals , Corpus Striatum/physiology , Humans , Neural Pathways/physiology
2.
J Comp Neurol ; 429(2): 321-36, 2001 Jan 08.
Article in English | MEDLINE | ID: mdl-11116223

ABSTRACT

This study examines the organization of thalamostriatal projections from ventral tier nuclei that relay basal ganglia output to the frontal cortex. Although previous thalamostriatal studies emphasize projections from the intralaminar nuclei, studies in primates show a substantial projection from the ventral anterior (VA) and ventral lateral (VL) nuclei. These nuclei make up the main efferent projection from the basal ganglia to frontal cortical areas, including primary motor, supplementary, premotor, and cingulate motor areas. Functionally related motor areas of the frontal cortex and VA/VL have convergent projections to specific regions of the dorsal striatum. The distribution of VA/VL terminals within the striatum is crucial to understanding their relationship to motor cortical afferents. We placed anterograde tracer injections into discrete VA/VL thalamic areas. VA/VL thalamostriatal projections terminate in broad, rostrocaudal regions of the dorsal striatum, corresponding to regions innervated by functionally related cortical motor areas. The pars oralis division of VL projects primarily to the dorsolateral, postcommissural putamen, whereas the parvicellular VA targets more medial and rostral putamen regions, and the magnocellular division of VA targets the dorsal head of the caudate nucleus. Whereas these results demonstrate a general functional topography, specific VA/VL projections overlap extensively, suggesting that functionally distinct VA/VL projections may also converge in dorsal striatal areas. Within striatal territories, VA/VL projections terminate in a patchy, nonhomogeneous manner, indicating another level of complexity. Moreover, terminal fields contain both terminal clusters and scattered, long, unbranched fibers with many varicosities. These fiber morphologies resemble those from the cortex and raise the possibility that VA/VL thalamostriatal projections neurons have divergent connectional features.


Subject(s)
Basal Ganglia/ultrastructure , Ventral Thalamic Nuclei/ultrastructure , Animals , Basal Ganglia/anatomy & histology , Frontal Lobe/ultrastructure , Immunohistochemistry , Macaca nemestrina , Nerve Fibers/physiology
3.
J Neurosci ; 20(10): 3798-813, 2000 May 15.
Article in English | MEDLINE | ID: mdl-10804220

ABSTRACT

Current models of basal ganglia circuitry primarily associate the ventral thalamic nuclei with relaying basal ganglia output to the frontal cortex. However, some studies have demonstrated projections from the ventral anterior (VA) and ventral lateral (VL) thalamic nuclei to the striatum, suggesting that these nuclei directly modulate the striatum. VA/VL nuclei have specific connections with primary, supplementary, premotor, and cingulate motor cortices indicating their involvement in motor function. These areas mediate different aspects of motor control such as movement execution, motor learning, and sensorimotor integration. Increasing evidence indicates that functionally related motor areas have convergent projections to the dorsal striatum, suggesting that integration of different aspects of motor control occur at the level of the striatum. This study examines the organization of VA/VL thalamic inputs to the dorsal "motor" striatum to determine how this afferent projection is organized with respect to corticostriatal afferents from motor, premotor, and cingulate motor areas. Motor cortical projections to specific dorsal striatal regions arose from multiple areas, including components from primary motor, premotor, supplementary, and cingulate motor areas. Diverse motor cortical projections to a given dorsal striatal region indicated convergence of functionally related corticostriatal motor pathways. Most dorsal striatal sites received dense thalamic inputs from the VL pars oralis nucleus. Additional thalamostriatal projections arose from VA, VL pars caudalis, and ventral posterior lateral pars oralis nuclei and Olszewski's Area X. Our results provide evidence for convergent striatal projections from interconnected ventral thalamic and cortical motor areas, suggesting that these afferents modulate the same striatal output circuits.


Subject(s)
Motor Cortex/cytology , Neostriatum/cytology , Ventral Thalamic Nuclei/cytology , Animals , Fluorescent Dyes , Gyrus Cinguli/cytology , Isoquinolines , Macaca mulatta , Macaca nemestrina , Motor Neurons/cytology , Neural Pathways , Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
4.
J Neurosci ; 20(6): 2369-82, 2000 Mar 15.
Article in English | MEDLINE | ID: mdl-10704511

ABSTRACT

Clinical manifestations in diseases affecting the dopamine system include deficits in emotional, cognitive, and motor function. Although the parallel organization of specific corticostriatal pathways is well documented, mechanisms by which dopamine might integrate information across different cortical/basal ganglia circuits are less well understood. We analyzed a collection of retrograde and anterograde tracing studies to understand how the striatonigrostriatal (SNS) subcircuit directs information flow between ventromedial (limbic), central (associative), and dorsolateral (motor) striatal regions. When viewed as a whole, the ventromedial striatum projects to a wide range of the dopamine cells and receives a relatively small dopamine input. In contrast, the dorsolateral striatum (DLS) receives input from a broad expanse of dopamine cells and has a confined input to the substantia nigra (SN). The central striatum (CS) receives input from and projects to a relatively wide range of the SN. The SNS projection from each striatal region contains three substantia nigra components: a dorsal group of nigrostriatal projecting cells, a central region containing both nigrostriatal projecting cells and its reciprocal striatonigral terminal fields, and a ventral region that receives a specific striatonigral projection but does not contain its reciprocal nigrostriatal projection. Examination of results from multiple tracing experiments simultaneously demonstrates an interface between different striatal regions via the midbrain dopamine cells that forms an ascending spiral between regions. The shell influences the core, the core influences the central striatum, and the central striatum influences the dorsolateral striatum. This anatomical arrangement creates a hierarchy of information flow and provides an anatomical basis for the limbic/cognitive/motor interface via the ventral midbrain.


Subject(s)
Corpus Striatum/cytology , Frontal Lobe/cytology , Substantia Nigra/cytology , Ventral Tegmental Area/cytology , Animals , Macaca mulatta , Macaca nemestrina , Microinjections , Molecular Probes , Nerve Fibers , Neural Pathways , Neurons/ultrastructure , Phytohemagglutinins , Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
5.
Ann N Y Acad Sci ; 877: 33-48, 1999 Jun 29.
Article in English | MEDLINE | ID: mdl-10415641

ABSTRACT

The concept of the ventral striatum was first put forth by Heimer and Wilson to describe the extension of basal ganglia elements into the olfactory tubercle. The ventral striatum includes the conventional nucleus accumbens, which has been closely associated with reward and motivation. This paper uses the afferent connections to the ventral striatum to define this region in monkeys. Furthermore the shell and core subterritories are discussed with respect to their histochemistry and specific connections.


Subject(s)
Corpus Striatum/physiology , Primates/physiology , Animals , Basal Ganglia/physiology , Motivation , Olfactory Pathways/physiology , Reward
6.
J Neurosci ; 17(24): 9686-705, 1997 Dec 15.
Article in English | MEDLINE | ID: mdl-9391023

ABSTRACT

We examined the striatal projections from different cytoarchitectonic regions of the insular cortex using anterograde and retrograde techniques. The shell and medial ventral striatum receive inputs primarily from the agranular and ventral dysgranular insula. The central ventral striatum receives inputs primarily from the dorsal agranular and dysgranular insula. Projections to the central ventral striatum originate from more posterior and dorsal insular regions than projections to the medial ventral striatum. The dorsolateral striatum receives projections primarily from the dorsal dysgranular and granular insula. These results show that cytoarchitectonically less differentiated (agranular) insular regions project to the ventromedial "limbic" part of the ventral striatum, whereas more differentiated (granular) insular regions project to the dorsolateral "sensorimotor" part of the striatum. The finding that the ventral "limbic" striatum receives inputs from less differentiated regions of the insula is consistent with the general principle that less differentiated cortical regions project primarily to the "limbic" striatum. Functionally, the ventral striatum receives insular projections primarily related to integrating feeding behavior with rewards and memory, whereas the dorsolateral striatum receives insular inputs related to the somatosensation. Information regarding food acquisition in the insula may be sent to the intermediate area of the striatum.


Subject(s)
Cerebral Cortex/cytology , Corpus Striatum/cytology , Macaca mulatta/anatomy & histology , Macaca nemestrina/anatomy & histology , Animals , Gyrus Cinguli/cytology , Limbic System/cytology , Neural Pathways , Prefrontal Cortex/cytology , Silver Staining , Taste/physiology , Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
7.
J Comp Neurol ; 354(1): 127-49, 1995 Mar 27.
Article in English | MEDLINE | ID: mdl-7542290

ABSTRACT

Although thalamic projections to the dorsal striatum are well described in primates and other species, little is known about thalamic projections to the ventral or "limbic" striatum in the primate. This study explores the organization of the thalamic projections to the ventral striatum in the primate brain by means of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and Lucifer yellow (LY) retrograde tracer techniques. In addition, because functional and connective differences have been described for the core and shell components of the nucleus accumbens in the rat and are thought to be similar in the primate, this study also explores whether these regions of the nucleus accumbens can be distinguished by their thalamic input. Tracer injections are placed in different portions of the ventral striatum, including the medial and lateral regions of the ventral striatum; the central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens; and the shell region of the nucleus accumbens. Retrogradely labeled neurons are located mainly in the midline nuclear group (anterior and posterior paraventricular, paratenial, rhomboid, and reuniens thalamic nuclei) and in the parafascicular thalamic nucleus. Additional labeled cells are found in other portions of the intralaminar nuclear group as well as in other thalamic nuclei in the ventral, anterior, medial, lateral, and posterior thalamic nuclear groups. The distribution of labeled cells varies depending on the area of the ventral striatum injected. All regions of the ventral striatum receive strong projections from the midline thalamic nuclei and from the parafascicular nucleus. In addition, the medial region of the ventral striatum receives numerous projections from the central superior lateral nucleus, the magnocellular subdivision of the ventral anterior nucleus, and parts of the mediodorsal nucleus. After injection into the lateral region of the ventral striatum, few labeled neurons are seen scattered in nuclei of the intralaminar and ventral thalamic groups and occasional labeled cells in the mediodorsal nucleus. The central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens, receives a limited projection from the midline thalamic, predominantly from the rhomboid nucleus. It receives much smaller projections from the central medial nucleus and the ventral, anterior, and medial thalamic groups. The shell of the nucleus accumbens receives the most limited projection from the thalamus and is innervated almost exclusively by the midline thalamic nuclei and the central medial and parafascicular nuclei. The shell is distinguished from the rest of the ventral striatum in that it receives the fewest projections from the ventral, anterior, medial, and lateral thalamic nuclei.


Subject(s)
Brain Mapping , Corpus Striatum/anatomy & histology , Macaca mulatta/anatomy & histology , Macaca nemestrina/anatomy & histology , Thalamic Nuclei/anatomy & histology , Animals , Fluorescent Dyes , Horseradish Peroxidase , Isoquinolines , Neural Pathways/anatomy & histology , Nucleus Accumbens/anatomy & histology , Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate , Wheat Germ Agglutinins
SELECTION OF CITATIONS
SEARCH DETAIL
...