Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Planta Med ; 88(14): 1341-1347, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35468649

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen that has limited treatment options. Natural product plant extracts offer a cost-effective option for the discovery of new anticryptococcal lead compounds. The acetone bark extract of Verbesina turbacensis was found to potently inhibit C. neoformans and was subjected to bioautography. Two compounds that inhibited the growth of C. neoformans were isolated and displayed minimum inhibitory concentration values of 10 and 310 µg/mL. The compounds were identified as the bornyl hydroxycinnamic esters bornyl caffeate and bornyl ferulate, respectively. To better understand initial structure-activity relationships, anticryptococcal activity was characterized for similar compounds. All compounds were further evaluated for mammalian cell toxicity using the MTT assay with MCF-7 and HEK-293 cell lines. Overall, bornyl caffeate demonstrated promising anticryptococcal potential given its potent inhibition of C. neoformans and low mammalian cell toxicity.


Subject(s)
Cryptococcus neoformans , Verbesina , Animals , Humans , HEK293 Cells , Structure-Activity Relationship , Antifungal Agents/pharmacology , Mammals
2.
Molecules ; 26(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920799

ABSTRACT

With the relentless development of drug resistance and re-emergence of many pathogenic bacteria, the need for new antibiotics and new antibiotic targets is urgent and growing. Bacterial peptidyl-tRNA hydrolase, Pth1, is emerging as a promising new target for antibiotic development. From the conserved core and high degree of structural similarity, broad-spectrum inhibition is postulated. However, Pth1 small-molecule inhibition is still in the earliest stages. Focusing on pathogenic bacteria, herein we report the phylogenetic classification of Pth1 and natural product inhibition spanning phylogenetic space. While broad-spectrum inhibition is found, narrow-spectrum and even potentially clade-specific inhibition is more frequently observed. Additionally reported are enzyme kinetics and general in vitro Pth1 solubility that follow phylogenetic boundaries along with identification of key residues in the gate loop region that appear to govern both. The studies presented here demonstrate the sizeable potential for small-molecule inhibition of Pth1, improve understanding of Pth enzymes, and advance Pth1 as a much-needed novel antibiotic target.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Carboxylic Ester Hydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/enzymology , Kinetics , Phylogeny , Solubility , Substrate Specificity
3.
J Am Chem Soc ; 142(29): 12715-12729, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32575981

ABSTRACT

How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-ß-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.


Subject(s)
Cholesterol/chemistry , Membrane Proteins/chemistry , Sphingolipids/chemistry , Cryoelectron Microscopy , Humans
4.
Elife ; 92020 02 25.
Article in English | MEDLINE | ID: mdl-32096762

ABSTRACT

Voltage-gated ion channels feature voltage sensor domains (VSDs) that exist in three distinct conformations during activation: resting, intermediate, and activated. Experimental determination of the structure of a potassium channel VSD in the intermediate state has previously proven elusive. Here, we report and validate the experimental three-dimensional structure of the human KCNQ1 voltage-gated potassium channel VSD in the intermediate state. We also used mutagenesis and electrophysiology in Xenopus laevisoocytes to functionally map the determinants of S4 helix motion during voltage-dependent transition from the intermediate to the activated state. Finally, the physiological relevance of the intermediate state KCNQ1 conductance is demonstrated using voltage-clamp fluorometry. This work illuminates the structure of the VSD intermediate state and demonstrates that intermediate state conductivity contributes to the unusual versatility of KCNQ1, which can function either as the slow delayed rectifier current (IKs) of the cardiac action potential or as a constitutively active epithelial leak current.


Subject(s)
KCNQ1 Potassium Channel/physiology , Animals , Electrophysiology , Fluorometry , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Magnetic Resonance Spectroscopy , Oocytes , Patch-Clamp Techniques , Protein Structure, Tertiary , Xenopus laevis
5.
Plants (Basel) ; 9(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963839

ABSTRACT

In the past, Native Americans of North America had an abundant traditional herbal legacy for treating illnesses, disorders, and wounds. Unfortunately, much of the ethnopharmacological knowledge of North American Indians has been lost due to population destruction and displacement from their native lands by European-based settlers. However, there are some sources of Native American ethnobotany remaining. In this work, we have consulted the ethnobotanical literature for members of the Asteraceae used in Cherokee and other Native American traditional medicines that are native to the southeastern United States. The aerial parts of Eupatorium serotinum, Eurybia macrophylla, Eutrochium purpureum, Polymnia canadensis, Rudbeckia laciniata, Silphium integrifolium, Smallanthus uvedalia, Solidago altissima, and Xanthium strumarium were collected from wild-growing plants in north Alabama. The plants were hydrodistilled to obtain the essential oils and the chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. The essential oils were tested for in-vitro antifungal activity against Aspergillus niger, Candida albicans, and Cryptococcus neoformans. The essential oil of E. serotinum showed noteworthy activity against C. neoformans with a minimum inhibitory concentration (MIC) value of 78 µg/mL, which can be attributed to the high concentration of cyclocolorenone in the essential oil.

6.
Molecules ; 24(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394798

ABSTRACT

With increasing drug resistance and the poor state of current antifungals, the need for new antifungals is urgent and growing. Therefore, we tested a variety of essential oils for antifungal activity. We report the minimum inhibitory concentrations (MIC) values for a common set of 82 essential oils against Aspergillus niger, Candida albicans, and Cryptococcus neoformans. Generally, narrow-spectrum activity was found. However, C. neoformans was much more susceptible to inhibition by essential oils with over one-third of those tested having MIC values below 160 ppm. GC-MS analysis showed the essential oils to be chemically diverse, yet, the potentially active major constituents typically fell into a few general categories (i.e., terpenes, terpenoids, terpenols). While essential oils remain a rich source of potential antifungals, focus should shift to prioritizing activity from novel compounds outside the commonalities reported here, instead of simply identifying antifungal activity. Further, capitalizing on bigger data approaches can provide significant returns in expediting the identification of active components.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus niger/drug effects , Candida albicans/drug effects , Cryptococcus neoformans/drug effects , Oils, Volatile/pharmacology , Antifungal Agents/chemistry , Big Data , Data Mining , Drug Discovery/methods , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology
7.
Acta Crystallogr D Struct Biol ; 74(Pt 11): 1085-1095, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30387767

ABSTRACT

Neutron crystallography is a powerful technique for directly visualizing the locations of H atoms in biological macromolecules. This information has provided key new insights into enzyme mechanisms, ligand binding and hydration. However, despite the importance of this information, the application of neutron crystallography in biology has been limited by the relatively low flux of available neutron beams and the large incoherent neutron scattering from hydrogen, both of which contribute to weak diffraction data with relatively low signal-to-background ratios. A method has been developed to fit weak data based on three-dimensional profile fitting of Bragg peaks in reciprocal space by an Ikeda-Carpenter function with a bivariate Gaussian. When applied to data collected from three different proteins, three-dimensional profile fitting yields intensities with higher correlation coefficients (CC1/2) at high resolutions, decreased Rfree factors, extended resolutions and improved nuclear density maps. Importantly, additional features are revealed in nuclear density maps that may provide additional scientific information. These results suggest that three-dimensional profile fitting will help to extend the capabilities of neutron macromolecular crystallography.


Subject(s)
Neutron Diffraction/methods , Protein Conformation , Proteins/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Mutation , Neutrons , Proteins/metabolism , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism
8.
Molecules ; 23(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954086

ABSTRACT

There is an urgent and unmet need for new antifungal therapies. Global fungal infection rates continue to rise and fungal infections pose increasing burdens on global healthcare systems. Exacerbating the situation, the available antifungal therapeutic arsenal is limited and development of new antifungals has been slow. Current antifungals are known for unwanted side effects including nephrotoxicity and hepatotoxicity. Thus, the need for new antifungals and new antifungal targets is urgent and growing. A collection of 60 commercially-available essential oils has been screened for antifungal activity against Aspergillus niger, Candida albicans, and Cryptococcus neoformans, as well as for cytotoxic activity against MCF-7 and MDA-MB-231 human breast tumor cell lines; the chemical compositions of the essential oils have been determined by gas chromatography-mass spectrometry (GC-MS). Ten essential oils showed remarkable antifungal and cytotoxic activities: Indian, Australian, and Hawaiian sandalwoods; melissa; lemongrass; cilantro; cassia; cinnamon; patchouli; and vetiver.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Aspergillus/drug effects , Candida albicans/drug effects , Cryptococcus neoformans/drug effects , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Plant Oils/chemistry
9.
Medicines (Basel) ; 4(4)2017 Sep 23.
Article in English | MEDLINE | ID: mdl-28946630

ABSTRACT

Background:Protium species (Burseraceae) have been used in the treatment of various diseases and conditions such as ulcers and wounds. Methods: The essential oil from the oleoresin of Protium amazonicum was obtained by hydrodistillation and analyzed by GC-MS, GC-FID, and chiral GC-MS. P. amazonicum oleoresin oil was screened for antifungal activity against Candida albicans, Aspergillus niger, and Cryptococcus neoformans. Results: A total of 54 components representing 99.6% of the composition were identified in the oil. The essential oil was dominated by δ-3-carene (47.9%) with lesser quantities of other monoterpenoids α-pinene (4.0%), p-cymene (4.1%), limonene (5.1%), α-terpineol (5.5%) and p-cymen-8-ol (4.8%). Chiral GC-MS revealed most of the monoterpenoids to have a majority of levo enantiomers present with the exceptions of limonene and α-terpineol, which showed a dextro majority. P. amazonicum oleoresin oil showed promising activity against Cryptococcus neoformans, with MIC = 156 µg/mL. Conclusions: This account is the first reporting of both the chemical composition and enantiomeric distribution of the oleoresin essential oil of P. amazonicum from Ecuador. The oil was dominated by (-)-δ-3-carene, and this compound, along with other monoterpenoids, likely accounts for the observed antifungal activity of the oil.

10.
Front Microbiol ; 8: 755, 2017.
Article in English | MEDLINE | ID: mdl-28536555

ABSTRACT

Pathogenic cryptococci are encapsulated yeast that can cause severe meningoencephalitis. Existing therapeutic options are dated and there is a growing need for new alternative antifungal agents for these fungi. Here we report novel inhibition of pathogenic cryptococci by the antimicrobial lectin Scytovirin. Inhibition was most potent against Cryptococcus neoformans var neoformans and C. gattii, with MFC values of 500 nM. Scytovirin binding was localized to the cell wall and shown to affect capsule size and release. No effect was observed on melanization or with cells grown in the presence the cell wall stressor Congo red. Synergy with existing antifungals was indicated, most strongly for amphotericin B. Overall, Scytovirin serves as a much needed new avenue for anticryptococcal development.

11.
Sci Adv ; 3(4): e1602794, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28439555

ABSTRACT

γ-Secretase cleavage of the Notch receptor transmembrane domain is a critical signaling event for various cellular processes. Efforts to develop inhibitors of γ-secretase cleavage of the amyloid-ß precursor C99 protein as potential Alzheimer's disease therapeutics have been confounded by toxicity resulting from the inhibition of normal cleavage of Notch. We present biochemical and structural data for the combined transmembrane and juxtamembrane Notch domains (Notch-TMD) that illuminate Notch signaling and that can be compared and contrasted with the corresponding traits of C99. The Notch-TMD and C99 have very different conformations, adapt differently to changes in model membrane hydrophobic span, and exhibit different cholesterol-binding properties. These differences may be exploited in the design of agents that inhibit cleavage of C99 while allowing Notch cleavage.


Subject(s)
Amyloid beta-Protein Precursor/chemistry , Models, Molecular , Receptors, Notch/chemistry , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Receptors, Notch/genetics , Receptors, Notch/metabolism
12.
Foods ; 6(3)2017 Mar 05.
Article in English | MEDLINE | ID: mdl-28273883

ABSTRACT

Rosemary (Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%-37.7%), 1,8-cineole (16.1%-29.3%), (+)-verbenone (0.8%-16.9%), (-)-borneol (2.1%-6.9%), (-)-camphor (0.7%-7.0%), and racemic limonene (1.6%-4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities.

13.
AIMS Mol Sci ; 4(2): 175-184, 2017.
Article in English | MEDLINE | ID: mdl-30740515

ABSTRACT

New antibiotics and new antibiotic targets are needed to counter the development of bacterial drug resistance that threatens to return the human population to the pre-antibiotic era. Bacterial peptidyl-tRNA hydrolase (Pth1) is a promising new antibiotic target in the early stages of development. While inhibitory activity has been observed in a variety of natural products, bioactive fractionation has been a bottleneck for inhibitor isolation. To expedite the isolation of inhibitory compounds from complex mixtures, we constructed a Pth1 affinity column and used it to isolate inhibitory compounds from crude natural products. Recombinantly produced S. typhimurium Pth1 was covalently attached to a column matrix and the inhibitory activity isolated from ethanol extracts of Salvinia minima. The procedure reported here demonstrates that isolation of Pth1 inhibitory compounds from complex natural product extracts can be greatly expedited over traditional bioactive fractionation, decreasing time and expense. The approach is generally applicable to Pth1s from other bacterial species and opens an avenue to advance and accelerate inhibitor development against this promising antimicrobial target.

14.
J Biomol NMR ; 67(1): 23-34, 2017 01.
Article in English | MEDLINE | ID: mdl-28028744

ABSTRACT

Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific 13C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct 13C chemical shifts and multiple magnetically equivalent 1H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with 13C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated 1H-13C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Isotope Labeling , Nuclear Magnetic Resonance, Biomolecular , Phenylalanine/chemistry , Recombinant Proteins/chemistry , Bacteria/genetics , Bacteria/metabolism , Carbon-13 Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proton Magnetic Resonance Spectroscopy , Ubiquitin/chemistry
15.
Bioorg Med Chem ; 25(2): 795-804, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27964996

ABSTRACT

Eighteen (1-18) and seven (1, 4, 6-8, 17 and 18) compounds were isolated from organic extracts of axenic cultures of two freshwater fungi Clohesyomyces sp. and Clohesyomyces aquaticus (Dothideomycetes, Ascomycota), respectively. Compounds 1-12 belong to the α-pyrone class of natural products, compounds 13 and 14 were tetrahydroxanthones, compounds 15 and 16 were hexahydroxanthones, while compounds 17 and 18 were cyclodepsipeptides. The structures were elucidated using a set of spectroscopic and spectrometric techniques. The absolute configurations of compounds 2, 3, 6, and 7 were assigned via a modified Mosher's ester method using 1H NMR data. The relative configurations of compounds 14-16 were determined through NOE data. Compounds 1, 2, 6, 8, 13, 14, and 15 were found to inhibit the essential enzyme bacterial peptidyl-tRNA hydrolase (Pth1), with (13; secalonic acid A) being the most potent. Compounds 1 and 4-18 were also evaluated for antimicrobial activity against an array of bacteria and fungi but were found to be inactive.


Subject(s)
Ascomycota/chemistry , Depsipeptides/pharmacology , Fresh Water/microbiology , Pyrones/pharmacology , Xanthones/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Ascomycota/metabolism , Bacteria/drug effects , Crystallography, X-Ray , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Dose-Response Relationship, Drug , Fungi/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pyrones/chemistry , Pyrones/isolation & purification , Structure-Activity Relationship , Xanthones/chemistry , Xanthones/isolation & purification
16.
Protein Expr Purif ; 126: 49-54, 2016 10.
Article in English | MEDLINE | ID: mdl-27235175

ABSTRACT

Performing the essential function of recycling peptidyl-tRNAs, peptidyl-tRNA hydrolases are ubiquitous in all domains of life. The multicomponent eukaryotic Pth system differs greatly from the bacterial system composed predominantly of a single Pth1 enzyme. While bacterial Pth1s are structurally well characterized and promising new targets for antibiotic development, eukaryotic Pths are largely understudied. From amino acid sequence alignment and secondary structure predictions, the human gene product PTRHD1 was classified as a eukaryotic Pth. Herein, we report cloning, recombinant bacterial expression, and weak binding to peptidyl-tRNA for PTRHD1. Additionally, we report binding to tRNA but absence of peptidyl-tRNA hydrolase activity. Thus, PTRHD1 is not a Pth and the functional consequence of nucleotide binding remains undefined.


Subject(s)
Carboxylic Ester Hydrolases , Gene Expression , Carboxylic Ester Hydrolases/biosynthesis , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/isolation & purification , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Recombinant Proteins , Solubility
17.
Antibiotics (Basel) ; 5(2)2016 May 10.
Article in English | MEDLINE | ID: mdl-27171117

ABSTRACT

Peptidyl-tRNA hydrolases (Pths) play ancillary yet essential roles in protein biosynthesis by recycling peptidyl-tRNA. In E. coli, inhibition of bacterial Pth1 leads to accumulation of peptidyl-tRNA, depletion of aminoacyl-tRNA, and cell death. Eukaryotes have multiple Pths and Pth1 knock out was shown to have no effect on viability in yeast. Thereby, bacterial Pth1 is a promising target for novel antibiotic development. With the abundance of Pth1 structural data, molecular docking was used for virtual screening of existing, commercially available antibiotics to map potential interactions with Pth enzymes. Overall, 83 compounds were docked to eight different bacterial Pth1 and three different Pth2 structures. A variety of compounds demonstrated favorable docking with Pths. Whereas, some compounds interacted favorably with all Pths (potential broad spectrum inhibition), more selective interactions were observed for Pth1 or Pth2 and even specificity for individual Pth1s. While the correlation between computational docking and experimentation still remains unknown, these findings support broad spectrum inhibition, but also point to the possibility of narrow spectrum Pth1 inhibition. Also suggested is that Pth1 can be distinguished from Pth2 by small molecule inhibitors. The findings support continued development of Pth1 as an antibiotic target.

18.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 3): 220-3, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26919526

ABSTRACT

Perdeuterated peptidyl-tRNA hydrolase 1 from Pseudomonas aeruginosa was crystallized for structural analysis using neutron diffraction. Crystals of perdeuterated protein were grown to 0.15 mm(3) in size using batch crystallization in 22.5% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol with a 20-molar excess of trilysine as an additive. Neutron diffraction data were collected from a crystal at room temperature using the MaNDi single-crystal diffractometer at Oak Ridge National Laboratory.


Subject(s)
Bacterial Proteins/chemistry , Carboxylic Ester Hydrolases/chemistry , Pseudomonas aeruginosa/enzymology , Crystallization , Crystallography, X-Ray , Neutron Diffraction
19.
Foods ; 5(4)2016 Oct 27.
Article in English | MEDLINE | ID: mdl-28231164

ABSTRACT

Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography-mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris.

20.
Nat Prod Commun ; 9(11): 1603-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25532291

ABSTRACT

Despite recent advances in antifungal development, fungi remain a devastating threat to human health and compromise viability of the food supply. Plant based antimicrobials represent a vast untapped source with tremendous potential. Herein we present the antifungal properties of more than 50 plant extracts against two important human and agricultural pathogens, Aspergillus niger and Rhizopus stolonifer. Multiple extracts exhibit promising MIC values of less than 100 µg/mL and are reported for both fungal species.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus niger/drug effects , Plant Extracts/pharmacology , Rhizopus/drug effects , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL