Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Endocrinol ; 17(2): 193-202, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12554747

ABSTRACT

Real-time imaging of the GH gene promoter linked to luciferase in living pituitary cells has revealed surprising heterogeneity and variety of dynamic patterns of gene expression. Cells treated with either forskolin or thyroid hormone generated a consistent and characteristic temporal response from cell populations, but detailed analysis of individual cells revealed different patterns. Approximately 25-26% of cells displayed no response, 25-33% of cells exhibited a sustained progressive rise in luciferase activity, and 41-50% showed a transient phasic, or oscillatory response, after given stimuli. In cells treated consecutively with the two stimuli, the population response to the second stimulus was augmented. Single-cell analysis revealed that this was partly due to an increased number of cells responding, but also that the prevalence of response patterns changed: cells that responded to an initial stimulus were more likely to respond subsequently in a progressive sustained manner. In conclusion, these studies have indicated that GH promoter activity in individual living pituitary cells is unstable and possibly stochastic, with dynamic variations from hour to hour. The prevalence of different temporal patterns of response to hormonal stimulation among a population of cells is altered by the endocrine history of those cells.


Subject(s)
Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Pituitary Gland/cytology , Pituitary Gland/physiology , Transcription, Genetic , Animals , Cells, Cultured , Colforsin/pharmacology , Cyclic AMP/pharmacology , Human Growth Hormone/drug effects , Humans , Luciferases/drug effects , Luciferases/genetics , Luciferases/metabolism , Pituitary Gland/drug effects , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Time Factors , Triiodothyronine/pharmacology
2.
Endocrinology ; 142(7): 3255-60, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11416049

ABSTRACT

PRL gene expression in the anterior pituitary gland responds rapidly to different hormonal signals. We have investigated the long-term timing of transcriptional activation from the PRL, GH, and cytomegalovirus promoters in response to different stimulus duration, using real-time imaging of luciferase expression in living stably transfected GH3 cells. Long-term stimulation of serum-starved cells with 50% serum induced a homogeneous rise in PRL promoter activity, with subsequent heterogeneous fluctuations in luciferase activity in individual cells. When cells were subjected to a 2-h pulse of 50% serum, followed by serum-free medium, there were long-term (approximately 50 h) synchronized, homogeneous oscillations in PRL promoter activity. This response was PRL-specific, because in GH3 cells expressing luciferase from the GH or cytomegalovirus promoters, a serum pulse elicited no oscillations in luciferase expression after an initial transient response to serum. The PRL promoter may therefore be a template for an unstable transcription complex subject to stochastic regulation, allowing an oscillatory transcriptional response to physiological signals. This suggests that precise timing and coordination of cell responses to different signal-duration may represent a novel mechanism for coordinating long-term dynamic changes in transcription in cell populations.


Subject(s)
Pituitary Gland/physiology , Prolactin/genetics , Promoter Regions, Genetic/physiology , Blood Physiological Phenomena , Cell Cycle/physiology , Cell Line , Humans , Luminescent Measurements , Oscillometry , Pituitary Gland/cytology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...