Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 10(6): 776-88, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10854410

ABSTRACT

A detailed comparative map of Brassica oleracea and Arabidopsis thaliana has been established based largely on mapping of Arabidopsis ESTs in two Arabidopsis and four Brassica populations. Based on conservative criteria for inferring synteny, "one to one correspondence" between Brassica and Arabidopsis chromosomes accounted for 57% of comparative loci. Based on 186 corresponding loci detected in B. oleracea and A. thaliana, at least 19 chromosome structural rearrangements differentiate B. oleracea and A. thaliana orthologs. Chromosomal duplication in the B. oleracea genome was strongly suggested by parallel arrangements of duplicated loci on different chromosomes, which accounted for 41% of loci mapped in Brassica. Based on 367 loci mapped, at least 22 chromosomal rearrangements differentiate B. oleracea homologs from one another. Triplication of some Brassica chromatin and duplication of some Arabidopsis chromatin were suggested by data that could not be accounted for by the one-to-one and duplication models, respectively. Twenty-seven probes detected three or more loci in Brassica, which represent 25.3% of the 367 loci mapped in Brassica. Thirty-one probes detected two or more loci in Arabidopsis, which represent 23.7% of the 262 loci mapped in Arabidopsis. Application of an EST-based, cross-species genomic framework to isolation of alleles conferring phenotypes unique to Brassica, as well as the challenges and opportunities in extrapolating genetic information from Arabidopsis to Brassica and to more distantly related crops, are discussed.


Subject(s)
Arabidopsis/genetics , Brassica/genetics , Chromosome Mapping , Expressed Sequence Tags , DNA, Plant/genetics , Genes, Plant , Genetic Linkage , Polymorphism, Genetic/genetics
2.
J Gen Virol ; 79 ( Pt 8): 2059-69, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9714258

ABSTRACT

Rupestris stem pitting (RSP), a component of the rugose wood complex, is one of the most widespread graft-transmissible diseases of grapevines. Here we report on the consistent association of a high molecular mass dsRNA (ca. 8.7 kbp) with RSP. The dsRNA was reverse-transcribed and cDNAs generated were cloned into Lambda ZAP II. Sequence analysis of the cDNA clones showed that the dsRNA was of viral origin and the putative virus was designated rupestris stem pitting associated virus-1 (RSPaV-1). The genome of RSPaV-1 consists of 8726 nt excluding a poly(A) tail at the 3' terminus. It has five potential open reading frames which have the capacity to code for the replicase (ORF1), the triple gene block (ORF2-4) and the coat protein (ORF5). Comparison of the genome structure and nucleotide and amino acid sequences indicated similarities of RSPaV-1 to apple stem pitting virus, and to a lesser extent, to potato virus M carlavirus. The possibility that different strains of RSPaV-1 or other viruses are associated with RSP is discussed.


Subject(s)
Genome, Viral , Plant Viruses/genetics , RNA Viruses/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Complementary , Molecular Sequence Data , Plant Viruses/classification , RNA Viruses/classification , RNA, Double-Stranded , Rosales/virology , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
3.
J Gen Virol ; 79 ( Pt 5): 1289-98, 1998 May.
Article in English | MEDLINE | ID: mdl-9603345

ABSTRACT

The entire genome of grapevine leafroll-associated closterovirus-2 (GLRaV-2), except the exact 5' terminus, was cloned and sequenced. The sequence encompasses nine open reading frames (ORFs) which include, in the 5' to 3' direction, an incomplete ORF1a encoding a putative viral polyprotein and eight ORFs that encode proteins of 52 kDa (ORF1b), 6 kDa (ORF2), 65 kDa (ORF3), 63 kDa (ORF4), 25 kDa (ORF5), 22 kDa (ORF6), 19 kDa (ORF7) and 24 kDa (ORF8) respectively, and 216 nucleotides of the 3' untranslated region. An incomplete ORF1a potentially encoded a large polyprotein containing the conserved domains characteristic of a papain-like protease, methyltransferase and helicase. ORF1b potentially encoded a putative RNA-dependent RNA polymerase. The expression of ORF1b may be via a +1 ribosomal frameshift mechanism, similar to other closteroviruses. A unique gene array, which is conserved in other closteroviruses, was also identified in GLRaV-2; it includes genes encoding a 6 kDa small hydrophobic protein, 65 kDa heat shock protein 70, 63 kDa protein of function unknown, 25 kDa coat protein duplicate and 22 kDa coat protein. Identification of ORF6 (22 kDa) as the coat protein gene was further confirmed by in vivo expression in E. coli and immunoblotting. Phylogenetic analysis comparing different genes of GLRaV-2 with those of other closteroviruses demonstrated a close relationship with beet yellows virus (BYV), beet yellow stunt virus and citrus tristeza virus. GLRaV-2 is the only closterovirus, so far, that matches the genome organization of the type member of the group, BYV, and thus can be unambiguously classified as a definitive member of the genus Closterovirus.


Subject(s)
Closterovirus/genetics , Genome, Viral , RNA, Double-Stranded , RNA, Viral , Sequence Analysis, RNA , Amino Acid Sequence , Cloning, Molecular , Closterovirus/classification , DNA, Complementary , Molecular Sequence Data , Open Reading Frames , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
4.
J Gen Virol ; 79 ( Pt 5): 1299-307, 1998 May.
Article in English | MEDLINE | ID: mdl-9603346

ABSTRACT

The RNA genome of grapevine leafroll-associated closterovirus-3 (GLRaV-3) was cloned as a cDNA generated from GLRaV-3-specific dsRNA, and a partial genome sequence of 13154 nucleotides (nt) including the 3' terminus was determined. The sequenced portion contained 13 open reading frames (ORFs) potentially encoding, in the 5'-3' direction, proteins of > 77 kDa (ORF1a; helicase, HEL), 61 kDa (ORF1b; RNA-dependent RNA polymerase, RdRp), 6 kDa (ORF2), 5 kDa (ORF3, small transmembrane protein), 59 kDa (ORF4; heat shock protein 70, HSP70), 55 kDa (ORF5), 35 kDa (ORF6; coat protein, CP), 53 kDa (ORF7; diverged coat protein, CPd), 21 kDa (ORF8), 20 kDa (ORF9), 20 kDa (ORF10), 4 kDa (ORF11), 7 kDa (ORF12), and an untranslated region of 277 nt. ORF1b is probably expressed via a +1 ribosomal frameshift mechanism, most similar to that of lettuce infectious yellows virus (LIYV). Phylogenetic analysis using various gene sequences (HEL, RdRp, HSP70 and CP) clearly demonstrated that GLRaV-3, a mealybug-transmissible closterovirus, is positioned independently from aphid-transmissible monopartite closteroviruses (beet yellows, citrus tristeza and beet yellows stunt) and whitefly-transmissible bipartite closterovirus (lettuce infectious yellows, LIYV). However, another alleged mealybug-transmissible closterovirus, little cherry virus, was shown to be more closely related to the whitefly-transmissible LIYV than to GLRaV-3.


Subject(s)
Closterovirus/genetics , Genome, Viral , RNA, Viral , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA, Viral , Molecular Sequence Data , Open Reading Frames , Sequence Homology, Amino Acid
5.
Theor Appl Genet ; 93(4): 534-8, 1996 Sep.
Article in English | MEDLINE | ID: mdl-24162344

ABSTRACT

The application of simple sequence repeat (SSR) genotyping for the characterization of genetic variation in crop plants has been hindered by ready access to useful primer pairs and potentially limited conservation of the repeat sequences among related species. In this phase of work, we report on the identification and characterization of SSRs that are conserved in Brassica napus L. (rapeseed) and its putative progenitors, B. oleracea L. (cabbage, and related vegetable types) and B. rapa (vegetable and oil types). Approximately 140 clones from a size-fractionated genomic library of B. napus were sequenced, and primer pairs were designed for 21 dinucleotide SSRs. Seventeen primer pairs amplified products in the three species and, among these, 13 detected variation between and within species. Unlike findings on SSR information content in human, no relationship could be established between the number of tandem repeats within the target sequence and heterozygosity. All primer pairs have been designed to work under identical amplification conditions; therefore, single-reaction, multiplex polymerase chain reaction (PCR) with these SSRs is possible. Once moderate numbers of primer pairs are accessible to the user community, SSR genotyping may provide a useful method for the characterization, conservation, and utilization of agricultural crop diversity.

6.
Theor Appl Genet ; 91(2): 206-11, 1995 Jul.
Article in English | MEDLINE | ID: mdl-24169765

ABSTRACT

A size-fractionated library of Brassica napus L. (rapeseed), composed of 15000 clones, was screened for the presence of GA-, CA-, and GATA-simple-sequence repeats (SSRs). GA-SSRs were four- and five-fold more abundant than CA- and GATA-SSRs, respectively, and present at a frequency of approximately one SSR for every 100 kb of DNA. Following the sequencing of 124 positive clones, primer pairs were designed and evaluated for seven selected SSRs. Products were amplified in an array of individuals of B. napus, B. oleracea and B. rapa, demonstrating that the seven SSRs were conserved among species. Two SSRs were polymorphic. Among 11 accessions, the dinucleotide (GA)-repeat, B.n.9A, yielded 12 fragments, while the tetranucleotide-repeat (GATA), B.n.6A2, revealed two fragments. Automated, fluorescence-based detection of polyacrylamide gels has been employed to simultaneously increase throughput, reduce unit cost, improve analytical resolution, and expedite data acquisition of SSR analysis. Though initial financial investment and technical capabilities may prevent some from directly employing our documented approach, SSR analysis warrants further investigation as a tool in genetic studies for enhancing both the conservation and utilization of genetic resources.

7.
Theor Appl Genet ; 85(2-3): 190-6, 1992 Nov.
Article in English | MEDLINE | ID: mdl-24197304

ABSTRACT

Effective conservation and the use of plant genetic resources are essential for future agricultural progress. Critical to this conservation effort is the development of genetic markers which not only distinguish individuals and accessions but also reflect the inherent variation and genetic relationships among collection holdings. We have examined the applicability of the random amplified polymorphic DNA (RAPD) assay for quick, cost-effective, and reliable use in addressing these needs in relation to collection organization and management. Twenty-five decamer oligonucleotide primers were screened individually with a test array composed of individuals representing a range of genetic relationships in Brassica oleracea L. (vegetable and forage cole crops). Over 140 reproducible, polymorphic fragments were generated for study. Each individual of the test array exhibited a unique molecular genotype and composites specific for accessions and botanical varieties could be established. An analysis of similarity based on amplified DNA fragments reflected the known genetic relationships among the selected entries. These results demonstrated that RAPD markers can be of great value in gene bank management for purposes of identification, measurement of variation, and establishment of genetic similarity at the intraspecific level.

SELECTION OF CITATIONS
SEARCH DETAIL
...