Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 185(4): 1519-34, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20479145

ABSTRACT

The distal arm of the fourth ("dot") chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010-1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight "wanderer" genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010-1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment.


Subject(s)
Chromosomes, Insect/genetics , Drosophila/genetics , Evolution, Molecular , Genome, Insect/genetics , Animals , Chromosome Mapping , Drosophila/classification , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Euchromatin/genetics , Genes, Insect/genetics , Heterochromatin/genetics , INDEL Mutation/genetics , Open Reading Frames/genetics , Species Specificity , Synteny , Tandem Repeat Sequences/genetics
2.
FASEB J ; 20(7): 846-57, 2006 May.
Article in English | MEDLINE | ID: mdl-16675842

ABSTRACT

The molecular chaperones alphaA- and alphaB-crystallins are important for cell survival and genomic stability and associate with the tubulin cytoskeleton. The mitotic spindle is abnormally assembled in a number of alphaA-/- and alphaB-/- lens epithelial cells. However, no report to date has studied the effect of alpha-crystallin expression on tubulin/microtubule assembly in lens epithelial cells. In the current work we tested the hypothesis that the absence of alphaA- and alphaB-crystallins alters microtubule assembly. Microtubules were reconstituted from freshly dissected explants of wild-type, alphaA-/-, alphaB-/-, and alpha(A/B) -/- (DKO) mouse lens epithelia and examined by electron microscopic and biochemical analyses. The wild-type microtubules were 4 mum long and approximately 25 nm wide and had a characteristic protofilament structure, but alphaB-/- microtubules were 2.5-fold longer. Microtubule-associated proteins (MAPs) extracted from microtubules by washing with salt included transketolase, alpha-enolase, and betaB2-crystallin. In DKO lens epithelial microtubules but not in wild-type, alphaA-/- or alphaB-/- microtubules, extraction of the MAPs gave very long (14-20 microm) "polyfilament" assemblies that were tightly bundled. Addition of exogenous alpha-crystallin (alphaA+ alphaB) was ineffective in preventing polyfilament formation. However, normal microtubule structure could be restored by including MAPs derived from wild-type lens epithelial cells during microtubule reconstitution. Intriguingly, these data suggest that alpha-crystallin may interact with MAPs to inhibit aggregation of microtubules in lens epithelial cells. Sedimentation analysis and 90 degrees light scattering measurements showed that alpha-crystallin suppressed tubulin assembly in vitro. Alpha-crystallin did not have a strong effect on the GTPase activity of purified tubulin. SDS-PAGE analysis showed that alpha-crystallin prevented heat-induced aggregation of tubulin, suggesting that alpha-crystallin may affect microtubule assembly by maintaining the pool of unassembled tubulin.


Subject(s)
Microtubules/chemistry , Microtubules/metabolism , alpha-Crystallin A Chain/metabolism , alpha-Crystallin B Chain/metabolism , Animals , Epithelium/metabolism , Gene Expression Regulation , Lens, Crystalline/metabolism , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Paclitaxel , RNA, Messenger/metabolism , Tubulin/metabolism , alpha-Crystallin A Chain/genetics , alpha-Crystallin B Chain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...