Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurodev Disord ; 16(1): 37, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970057

ABSTRACT

BACKGROUND: A sizeable proportion of pathogenic genetic variants identified in young children tested for congenital differences are associated with neurodevelopmental psychiatric disorders (NPD). In this growing group, a genetic diagnosis often precedes the emergence of diagnosable developmental concerns. Here, we describe DAGSY (Developmental Assessment of Genetically Susceptible Youth), a novel interdisciplinary 'genetic-diagnosis-first' clinic integrating psychiatric, psychological and genetic expertise, and report our first observations and feedback from families and referring clinicians. METHODS: We retrieved data on referral sources and indications, genetic and NPD diagnoses and recommendations for children seen at DAGSY between 2018 and 2022. Through a survey, we obtained feedback from twenty families and eleven referring clinicians. RESULTS: 159 children (mean age 10.2 years, 57.2% males) completed an interdisciplinary (psychiatry, psychology, genetic counselling) DAGSY assessment during this period. Of these, 69.8% had a pathogenic microdeletion or microduplication, 21.5% a sequence-level variant, 4.4% a chromosomal disorder, and 4.4% a variant of unknown significance with emerging evidence of pathogenicity. One in four children did not have a prior NPD diagnosis, and referral to DAGSY was motivated by their genetic vulnerability alone. Following assessment, 76.7% received at least one new NPD diagnosis, most frequently intellectual disability (24.5%), anxiety (20.7%), autism spectrum (18.9%) and specific learning (16.4%) disorder. Both families and clinicians responding to our survey expressed satisfaction, but also highlighted some areas for potential improvement. CONCLUSIONS: DAGSY addresses an unmet clinical need for children identified with genetic variants that confer increased vulnerability for NPD and provides a crucial platform for research in this area. DAGSY can serve as a model for interdisciplinary clinics integrating child psychiatry, psychology and genetics, addressing both clinical and research needs for this emerging population.


Subject(s)
Mental Disorders , Neurodevelopmental Disorders , Humans , Child , Neurodevelopmental Disorders/genetics , Female , Male , Mental Disorders/genetics , Genetic Predisposition to Disease , Adolescent
2.
J Exp Bot ; 64(13): 4089-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24078673

ABSTRACT

The leaf economics spectrum (LES) describes large cross-species variation in suites of leaf functional traits ranging from resource-acquisitive to resource-conservative strategies. Such strategies have been integral in explaining plant adaptation to diverse environments, and have been linked to numerous ecosystem processes. The LES has previously been found to be significantly modulated by climate, soil fertility, biogeography, growth form, and life history. One largely unexplored aspect of LES variation, whole-plant ontogeny, is investigated here using multiple populations of three very different species of sunflower: Helianthus annuus, Helianthus mollis, and Helianthus radula. Plants were grown under environmentally controlled conditions and assessed for LES and related traits at four key developmental stages, using recently matured leaves to standardize for leaf age. Nearly every trait exhibited a significant ontogenetic shift in one or more species, with trait patterns differing among populations and species. Photosynthetic rate, leaf nitrogen concentration, and leaf mass per area exhibited surprisingly large changes, spanning over two-thirds of the original cross-species LES variation and shifting from resource-acquisitive to resource-conservative strategies as the plants matured. Other traits being investigated in relation to the LES, such as leaf water content, pH, and vein density, also showed large changes. The finding that ontogenetic variation in LES strategy can be substantial leads to a recommendation of standardization by developmental stage when assessing 'species values' of labile traits for comparative approaches. Additionally, the substantial ontogenetic trait shifts seen within single individuals provide an opportunity to uncover the contribution of gene regulatory changes to variation in LES traits.


Subject(s)
Helianthus/growth & development , Photosynthesis/physiology , Plant Leaves/growth & development , Biomass , Carbon/metabolism , Ecosystem , Helianthus/anatomy & histology , Helianthus/genetics , Helianthus/physiology , Hydrogen-Ion Concentration , Nitrogen/metabolism , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Vascular Bundle/anatomy & histology , Plant Vascular Bundle/genetics , Plant Vascular Bundle/growth & development , Plant Vascular Bundle/physiology , Quantitative Trait Loci , Soil , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...