Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 11(10): 1332-1350, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37478171

ABSTRACT

Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Immunotherapy , CD40 Antigens , CD8-Positive T-Lymphocytes , Cytokines/therapeutic use , Disease Models, Animal , Interleukin-12/therapeutic use , Dendritic Cells , Tumor Microenvironment
2.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292991

ABSTRACT

Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified multiple components of the HUSH complex, including Setdb1 , as hits. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Furthermore, spontaneous immune clearance observed in Setdb1 -/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1 -/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1 -/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth comparable to Setdb1 wt tumors. Together, these results indicate a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.

3.
Nat Commun ; 13(1): 3140, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668129

ABSTRACT

Sarcoidosis is an idiopathic inflammatory disorder that is commonly treated with glucocorticoids. An imprecise understanding of the immunologic changes underlying sarcoidosis has limited therapeutic progress. Here in this open-label trial (NCT03910543), 10 patients with cutaneous sarcoidosis are treated with tofacitinib, a Janus kinase inhibitor. The primary outcome is the change in the cutaneous sarcoidosis activity and morphology instrument (CSAMI) activity score after 6 months of treatment. Secondary outcomes included change in internal organ involvement, molecular parameters, and safety. All patients experience improvement in their skin with 6 patients showing a complete response. Improvement in internal organ involvement is also observed. CD4+ T cell-derived IFN-γ is identified as a central cytokine mediator of macrophage activation in sarcoidosis. Additional type 1 cytokines produced by distinct cell types, including IL-6, IL-12, IL-15 and GM-CSF, also associate with pathogenesis. Suppression of the activity of these cytokines, especially IFN-γ, correlates with clinical improvement. Our results thus show that tofacitinib treatment is associated with improved sarcoidosis symptoms, and predominantly acts by inhibiting type 1 immunity.


Subject(s)
Pyrimidines , Sarcoidosis , Cytokines/metabolism , Humans , Piperidines/pharmacology , Piperidines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Sarcoidosis/drug therapy , Sarcoidosis/pathology
4.
JID Innov ; 1(2): 100021, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34909719

ABSTRACT

Detection of individual cytokines in routine biopsies from patients with inflammatory skin diseases has the potential to personalize diagnosis and treatment selection, but this approach has been limited by technical feasibility. We evaluate whether a chromogen-based RNA in situ hybridization approach can be used to detect druggable cytokines in psoriasis and atopic dermatitis. A series of psoriasis (n = 20) and atopic dermatitis (n = 26) biopsies were stained using RNA in situ hybridization for IL4, IL12B (IL-12/23 p40), IL13, IL17A, IL17F, IL22, IL23A (IL-23 p19), IL31, and TNF (TNF-α). NOS2 and IFNG, canonical psoriasis biomarkers, were also included. All 20 of the psoriasis cases were positive for IL17A, which tended to be the predominant cytokine, although some cases had relatively higher levels of IL12B, IL17F, or IL23A. The majority of cytokine expression in psoriasis was epidermal. A total of 22 of 26 atopic dermatitis cases were positive for IL13, also at varying levels; a subset of cases had significant IL4, IL22, or IL31 expression. Patterns were validated in independent bulk RNA-sequencing and single-cell RNA-sequencing datasets. Overall, RNA in situ hybridization for cytokines appears highly specific with virtually no background staining and may allow for individualized evaluation of treatment-relevant cytokine targets in biopsies from patients with inflammatory skin disorders.

5.
Nature ; 598(7882): 682-687, 2021 10.
Article in English | MEDLINE | ID: mdl-34671158

ABSTRACT

Tumours use various strategies to evade immune surveillance1,2. Immunotherapies targeting tumour immune evasion such as immune checkpoint blockade have shown considerable efficacy on multiple cancers3,4 but are ineffective for most patients due to primary or acquired resistance5-7. Recent studies showed that some epigenetic regulators suppress anti-tumour immunity2,8-12, suggesting that epigenetic therapies could boost anti-tumour immune responses and overcome resistance to current immunotherapies. Here we show that, in mouse melanoma models, depletion of KDM5B-an H3K4 demethylase that is critical for melanoma maintenance and drug resistance13-15-induces robust adaptive immune responses and enhances responses to immune checkpoint blockade. Mechanistically, KDM5B recruits the H3K9 methyltransferase SETDB1 to repress endogenous retroelements such as MMVL30 in a demethylase-independent manner. Derepression of these retroelements activates cytosolic RNA-sensing and DNA-sensing pathways and the subsequent type-I interferon response, leading to tumour rejection and induction of immune memory. Our results demonstrate that KDM5B suppresses anti-tumour immunity by epigenetic silencing of retroelements. We therefore reveal roles of KDM5B in heterochromatin regulation and immune evasion in melanoma, opening new paths for the development of KDM5B-targeting and SETDB1-targeting therapies to enhance tumour immunogenicity and overcome immunotherapy resistance.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Silencing , Histone-Lysine N-Methyltransferase/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Melanoma/immunology , Retroelements , Tumor Escape , Animals , Cell Line, Tumor , Epigenesis, Genetic , Heterochromatin , Humans , Interferon Type I/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins , Repressor Proteins
6.
J Allergy Clin Immunol ; 147(5): 1795-1809, 2021 05.
Article in English | MEDLINE | ID: mdl-33317858

ABSTRACT

BACKGROUND: Granuloma annulare (GA) is a common cutaneous inflammatory disorder characterized by macrophage accumulation and activation in skin. Its pathogenesis is poorly understood, and there are no effective treatments. The potential health implications of severe GA are unknown. OBJECTIVE: We sought to better understand GA pathogenesis and evaluate a molecularly targeted treatment approach for this disease. METHODS: We used single-cell RNA sequencing to study the immunopathogenesis of GA and also evaluated the efficacy of tofacitinib (a Janus kinase 1/3 inhibitor) in 5 patients with severe, long-standing GA in an open-label clinical trial. RESULTS: Using single-cell RNA sequencing, we found that in GA lesions IFN-γ production by CD4+ T cells is upregulated and is associated with inflammatory polarization of macrophages and fibroblasts. In particular, macrophages upregulate oncostatin M, an IL-6 family cytokine, which appears to act on fibroblasts to alter extracellular matrix production, a hallmark of GA. IL-15 and IL-21 production appears to feed back on CD4+ T cells to sustain inflammation. Treatment of 5 patients with recalcitrant GA with tofacitinib inhibited IFN-γ and oncostatin M, as well as IL-15 and IL-21, activity and resulted in clinical and histologic disease remission in 3 patients and marked improvement in the other 2. Inhibition of these effects at the molecular level paralleled the clinical improvement. Evidence of systemic inflammation is also present in some patients with severe GA and is mitigated by tofacitinib. CONCLUSIONS: The Janus kinase-signal transducer and activator of transcription pathway is activated in GA, likely in part through the activity of IFN-γ and oncostatin M, and Janus kinase inhibitors appear to be an effective treatment.


Subject(s)
Cytokines/immunology , Granuloma Annulare/drug therapy , Janus Kinase Inhibitors/therapeutic use , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Aged , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Fibroblasts/drug effects , Fibroblasts/immunology , Granuloma Annulare/genetics , Granuloma Annulare/immunology , Granuloma Annulare/pathology , Humans , Janus Kinase Inhibitors/pharmacology , Macrophages/drug effects , Macrophages/immunology , Middle Aged , Piperidines/pharmacology , Pyrimidines/pharmacology , Sequence Analysis, RNA , Skin/drug effects , Skin/immunology , Skin/pathology
7.
Nature ; 583(7817): 609-614, 2020 07.
Article in English | MEDLINE | ID: mdl-32581358

ABSTRACT

Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability1,2. In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials3. Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a 'decoy-resistant' IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8+ T cells, decreasing the prevalence of exhausted CD8+ T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1+ precursor CD8+ T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier.


Subject(s)
Immunotherapy , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-18/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Kaplan-Meier Estimate , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Receptors, Interleukin-18/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
8.
J Evol Biol ; 33(5): 629-641, 2020 05.
Article in English | MEDLINE | ID: mdl-31991034

ABSTRACT

Successful reproduction depends on interactions between numerous proteins beyond those involved directly in gamete fusion. Although such reproductive proteins evolve in response to sexual selection pressures, how networks of interacting proteins arise and evolve as reproductive phenotypes change remains an open question. Here, we investigated the molecular evolution of the 'sex peptide network' of Drosophila melanogaster, a functionally well-characterized reproductive protein network. In this species, the peptide hormone sex peptide (SP) and its interacting proteins cause major changes in female physiology and behaviour after mating. In contrast, females of more distantly related Drosophila species do not respond to SP. In spite of these phenotypic differences, we detected orthologs of all network proteins across 22 diverse Drosophila species and found evidence that most orthologs likely function in reproduction throughout the genus. Within SP-responsive species, we detected the recurrent, adaptive evolution of several network proteins, consistent with sexual selection acting to continually refine network function. We also found some evidence for adaptive evolution of several proteins along two specific phylogenetic lineages that correspond with increased expression of the SP receptor in female reproductive tracts or increased sperm length, respectively. Finally, we used gene expression profiling to examine the likely degree of functional conservation of the paralogs of an SP network protein that arose via gene duplication. Our results suggest a dynamic history for the SP network in which network members arose before the onset of robust SP-mediated responses and then were shaped by both purifying and positive selection.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Intercellular Signaling Peptides and Proteins/genetics , Receptors, Peptide/genetics , Sexual Selection , Adaptation, Biological , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Gene Duplication , Intercellular Signaling Peptides and Proteins/metabolism , Male , Receptors, Peptide/metabolism , Reproduction/genetics , Serine Proteases/genetics , Serine Proteases/metabolism
9.
J Am Acad Dermatol ; 82(3): 612-621, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31185230

ABSTRACT

BACKGROUND: Sarcoidosis and granuloma annulare (GA) are cutaneous granulomatous disorders that can be difficult to treat. There is evidence of underlying Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway activation in sarcoidosis, suggesting that JAK inhibition might be effective. OBJECTIVE: To evaluate treatment with tofacitinib, a JAK inhibitor, in patients with recalcitrant sarcoidosis and GA. METHODS: A prospective evaluation of tofacitinib in 4 consecutive patients with recalcitrant cutaneous sarcoidosis (n = 3) and generalized GA (n = 1) was conducted. Immunohistochemical analysis of skin biopsy specimens from other patients with sarcoidosis (n = 21) and GA (n = 17) was performed to characterize patterns of JAK-STAT pathway activation. RESULTS: Tofacitinib resulted in a mean improvement in the baseline Cutaneous Sarcoidosis Activity and Morphology Instrument and Granuloma Annulare Scoring Index scores of 96% (standard deviation, 2%). Histologic resolution of disease was documented in all patients (3 out of 3) who had skin biopsies while receiving therapy. Constitutive STAT1 and STAT3 activation was observed in both sarcoidosis and GA, albeit in different patterns. Signal regulatory protein α may explain the differences in JAK-STAT signaling between sarcoidosis and GA. LIMITATIONS: The study is limited by the small number of participants. CONCLUSIONS: Tofacitinib resulted in dramatic improvement in 4 patients with cutaneous sarcoidosis and GA. Larger studies are underway to better understand this effect.


Subject(s)
Granuloma Annulare/drug therapy , Janus Kinase Inhibitors/therapeutic use , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Remission Induction/methods , Sarcoidosis/drug therapy , Adult , Aged , Biopsy , Female , Granuloma Annulare/diagnosis , Granuloma Annulare/pathology , Humans , Male , Middle Aged , Prospective Studies , Sarcoidosis/diagnosis , Sarcoidosis/pathology , Severity of Illness Index , Skin/pathology , Treatment Outcome
10.
Mol Cancer Ther ; 18(3): 706-717, 2019 03.
Article in English | MEDLINE | ID: mdl-30523048

ABSTRACT

Tumor heterogeneity is a major challenge for cancer treatment, especially due to the presence of various subpopulations with stem cell or progenitor cell properties. In mouse melanomas, both CD34+p75- (CD34+) and CD34-p75- (CD34-) tumor subpopulations were characterized as melanoma-propagating cells (MPC) that exhibit some of those key features. However, these two subpopulations differ from each other in tumorigenic potential, ability to recapitulate heterogeneity, and chemoresistance. In this study, we demonstrate that CD34+ and CD34- subpopulations carrying the BRAFV600E mutation confer differential sensitivity to targeted BRAF inhibition. Through elevated KDM5B expression, melanoma cells shift toward a more drug-tolerant, CD34- state upon exposure to BRAF inhibitor or combined BRAF inhibitor and MEK inhibitor treatment. KDM5B loss or inhibition shifts melanoma cells to the more BRAF inhibitor-sensitive CD34+ state. These results support that KDM5B is a critical epigenetic regulator that governs the transition of key MPC subpopulations with distinct drug sensitivity. This study also emphasizes the importance of continuing to advance our understanding of intratumor heterogeneity and ultimately develop novel therapeutics by altering the heterogeneous characteristics of melanoma.


Subject(s)
Antigens, CD34/genetics , DNA-Binding Proteins/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , Humans , MAP Kinase Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase Kinase 1/genetics , Melanoma/genetics , Melanoma/pathology , Mice , Mutation , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/pharmacology , Vemurafenib/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...