Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 371(6525): 164-167, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33414218

ABSTRACT

Carbonaceous chondritic meteorites are primordial Solar System materials and a source of water delivery to Earth. Fluid flow on the parent bodies of these meteorites is known to have occurred very early in Solar System history (first <4 million years). We analyze short-lived uranium isotopes in carbonaceous chondrites, finding excesses of 234-uranium over 238-uranium and 238-uranium over 230-thorium. These indicate that the fluid-mobile uranium ion U6+ moved within the past few 100,000 years. In some meteorites, this time scale is less than the cosmic-ray exposure age, which measures when they were ejected from their parent body into space. Fluid flow occurred after melting of ice, potentially by impact heating, solar heating, or atmospheric ablation. We favor the impact heating hypothesis, which implies that the parent bodies still contain ice.

3.
Data Brief ; 29: 105113, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32021883

ABSTRACT

Thirty-eight lava and pyroclastic samples were collected from Mt. Erciyes and Mt. Hasan, the two largest stratovolcanic complexes of the Central Anatolian Volcanic Province in Turkey. More than 1000 zircon crystals were dated by Secondary Ion Mass Spectrometry (SIMS) applying U-Th disequilibrium and U-Pb methods. Model ages were calculated from zircon 230Th-238U-232Th isotopic compositions in combination with U-Th whole rock data of digested lava samples generated by Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Middle and Late Pleistocene ages dominate the dataset, but are complemented by both older (predominantly Early Pleistocene) and younger (Holocene) ages. U-Th disequilibrium and U-Pb zircon data provide maximum eruption ages that can be further specified by (U-Th)/He geochronology (zircon double dating). Additionally, these data are important to constrain the longevity and size of magmatic systems, and their potential for reactivation leading to potentially hazardous eruptions.

SELECTION OF CITATIONS
SEARCH DETAIL
...