Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci ; 302: 1-8, 2018 08.
Article in English | MEDLINE | ID: mdl-29709517

ABSTRACT

Mathematical modeling is a powerful tool in systems biology; we focus here on improving the reliability of model predictions by reducing the uncertainty in model dynamics through experimental design. Model-based experimental design is a process by which experiments can be systematically chosen to reduce dynamic uncertainty in a given model. We discuss the Maximally Informative Next Experiment (MINE) method for group-wise selection of points in an experimental design and present a convergence result for MINE with nonlinear models. As an application, we illustrate the method on polynomial regression and an ODE model for immune system dynamics. The MINE criterion sequentially determines experiments that can be conducted to best refine model dynamics.


Subject(s)
Models, Biological , Nonlinear Dynamics , Systems Biology/methods , Animals , Humans , Mathematical Concepts , Models, Immunological , NFATC Transcription Factors/immunology , Receptors, Antigen, B-Cell/immunology , Research Design/statistics & numerical data , Signal Transduction/immunology , Systems Biology/statistics & numerical data , Uncertainty
2.
Processes (Basel) ; 3(1): 75-97, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26525178

ABSTRACT

The kinase Syk is intricately involved in early signaling events in B cells and is required for proper response when antigens bind to B cell receptors (BCRs). Experiments using an analog-sensitive version of Syk (Syk-AQL) have better elucidated its role, but have not completely characterized its behavior. We present a computational model for BCR signaling, using dynamical systems, which incorporates both wild-type Syk and Syk-AQL. Following the use of sensitivity analysis to identify significant reaction parameters, we screen for parameter vectors that produced graded responses to BCR stimulation as is observed experimentally. We demonstrate qualitative agreement between the model and dose response data for both mutant and wild-type kinases. Analysis of our model suggests that the level of NF-κB activation, which is reduced in Syk-AQL cells relative to wild-type, is more sensitive to small reductions in kinase activity than Erkp activation, which is essentially unchanged. Since this profile of high Erkp and reduced NF-κB is consistent with anergy, this implies that anergy is particularly sensitive to small changes in catalytic activity. Also, under a range of forward and reverse ligand binding rates, our model of Erkp and NF-κB activation displays a dependence on a power law affinity: the ratio of the forward rate to a non-unit power of the reverse rate. This dependence implies that B cells may respond to certain details of binding and unbinding rates for ligands rather than simple affinity alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...