Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 19(18): 2423-2436, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29956438

ABSTRACT

We report solid-state nuclear magnetic resonance 1 H spin-lattice relaxation, single-crystal X-ray diffraction, powder X-ray diffraction, field emission scanning electron microscopy, and differential scanning calorimetry in solid samples of 2-ethylanthracene (EA) and 2-ethylanthraquinone (EAQ) that have been physically purified in different ways from the same commercial starting compounds. The solid-state 1 H spin-lattice relaxation is always non-exponential at high temperatures as expected when CH3 rotation is responsible for the relaxation. The 1 H spin-lattice relaxation experiments are very sensitive to the "several-molecule" (clusters) structure of these van der Waals molecular solids. In the three differently prepared samples of EAQ, the relaxation also becomes very non-exponential at low temperatures. This is very unusual and the decay of the nuclear magnetization can be fitted with both a stretched exponential and a double exponential. This unusual result correlates with the powder X-ray diffractometry results and suggests that the anomalous relaxation is due to crystallites of two (or more) different polymorphs (concomitant polymorphism).

2.
J Phys Chem A ; 121(33): 6220-6230, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28742961

ABSTRACT

Using solid-state 1H nuclear magnetic resonance (NMR) spin-lattice relaxation experiments, we have investigated the effects of several solid-solid phase transitions on tert-butyl and methyl group rotation in solid 1,3,5-tri-tert-butylbenzene. The goal is to relate the dynamics of the tert-butyl groups and their constituent methyl groups to properties of the solid determined using single-crystal X-ray diffraction and differential scanning calorimetry (DSC). On cooling, the DSC experiments see a first-order, solid-solid phase transition at either 268 or 155 K (but not both) depending on thermal history. The 155 K transition (on cooling) is identified by single-crystal X-ray diffraction to be one from a monoclinic phase (above 155 K), where the tert-butyl groups are disordered (that is, with a rotational 6-fold intermolecular potential dominating), to a triclinic phase (below 155 K), where the tert-butyl groups are ordered (that is, with a rotational 3-fold intermolecular potential dominating). This transition shows very different DSC scans when both a 4.7 mg polycrystalline sample and a 19 mg powder sample are used. The 1H spin-lattice relaxation experiments with a much larger 0.7 g sample are very complicated and, depending on thermal history, can show hysteresis effects over many hours and over very large temperature ranges. In the high-temperature monoclinic phase, the tert-butyl groups rotate with NMR activation energies (closely related to rotational barriers) in the 17-23 kJ mol-1 range, and the constituent methyl groups rotate with NMR activation energies in the 7-12 kJ mol-1 range. In the low-temperature triclinic phase, the rotations of the tert-butyl groups and their methyl groups in the aromatic plane are quenched (on the NMR time scale). The two out-of-plane methyl groups in the tert-butyl groups are rotating with activation energies in the 5-11 kJ mol-1 range.

3.
Solid State Nucl Magn Reson ; 85-86: 1-11, 2017 09.
Article in English | MEDLINE | ID: mdl-28260612

ABSTRACT

We report a variety of experiments and calculations and their interpretations regarding methyl group (CH3) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C6H8O3(1) + H2O → C6H10O4(2)]. The techniques are solid state 1H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1H NMR spectroscopy. The solid state 1H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images.

4.
Nano Lett ; 9(8): 3082-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19606848

ABSTRACT

Herein we report on the extraordinary thermal stability of approximately 35 nm Mg-nanograins that constitute the matrix of a Ti(2)AlC-Mg composite that has previously been shown to have excellent mechanical properties. The microstructure is so stable that heating the composite three times to 700 degrees C, which is 50 degrees C over the melting point of Mg, not only resulted in the repeated melting of the Mg, but surprisingly and within the resolution of our differential scanning calorimeter, did not lead to any coarsening. The reduction in the Mg melting point due to the nanograins was approximately 50 degrees C. X-ray diffraction and neutron spectroscopy results suggest that thin, amorphous, and/or poorly crystallized rutile, anatase, and/or magnesia layers separate the Mg nanograins and prevent them from coarsening. Clearly that layer is thin enough, and thus mechanically robust enough, to survive the melting and solidification stresses encountered during cycling. Annealing in hydrogen at 250 degrees C for 20 h, also did not seem to alter the grain size significantly.

SELECTION OF CITATIONS
SEARCH DETAIL
...