Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Neurol ; 9: 780, 2018.
Article in English | MEDLINE | ID: mdl-30333784

ABSTRACT

Background: Central nervous system involvement in myotonic dystrophy type 1 (DM1) is associated with cognitive deficits, impaired social performance and excessive somnolence, which greatly impact quality of life. With the advent of clinical trials in DM1, there is a pressing need to identify outcome measures for quantification of central symptoms that are feasible and valid. In this context, we sought to evaluate neuropsychological and self-reported measures currently recommended by expert consensus, with particular reference to their specificity for central nervous system involvement in a moderate-sized DM1 cohort. Methods: Forty-five adults with DM1 and 20 controls completed neuropsychology assessments and symptom questionnaires. Those without contraindication also underwent MRI brain, from which global gray matter volume and white matter lesion volume were quantified. CTG repeat was measured by small pool PCR, and was screened for the presence of variant repeat sequences. Results: The neuropsychology test battery was well tolerated and detected impairment across various domains in the DM1 group vs. controls. Large effect sizes in the Stroop and Trail Making Tests were however attenuated by correction for basic speed, which could be influenced by dysarthria and upper limb weakness, respectively. Low mood was strongly associated with increased self-reporting of central symptoms, including cognitive impairment. Conversely, self-reported cognitive impairment did not generally predict poorer performance in neuropsychology assessments, and there was a trend toward greater self-reporting of low mood and cognitive problems in those with milder white matter change on MRI. Global gray matter volume correlated with performance in several neuropsychology assessments in a multivariate model with age and sex, while white matter lesion volume was associated with executive dysfunction reported by a proxy. Screening for variant repeats was positive in three individuals, who reported mild muscle symptoms. Conclusions: Identification of outcome measures with good specificity for brain involvement in DM1 is challenging, since complex cognitive assessments may be compromised by peripheral muscle weakness and self-reported questionnaires may be influenced by mood and insight. This highlights the need for further large, longitudinal studies to identify and validate objective measures, which may include imaging biomarkers and cognitive measures not influenced by motor speed.

2.
Eur J Hum Genet ; 26(11): 1635-1647, 2018 11.
Article in English | MEDLINE | ID: mdl-29967337

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3'-untranslated region of the DMPK gene. The repeat expansion is somatically unstable and tends to increase in length with time, contributing to disease progression. In some individuals, the repeat array is interrupted by variant repeats such as CCG and CGG, stabilising the expansion and often leading to milder symptoms. We have characterised three families, each including one person with variant repeats that had arisen de novo on paternal transmission of the repeat expansion. Two individuals were identified for screening due to an unusual result in the laboratory diagnostic test, and the third due to exceptionally mild symptoms. The presence of variant repeats in all three expanded alleles was confirmed by restriction digestion of small pool PCR products, and allele structures were determined by PacBio sequencing. Each was different, but all contained CCG repeats close to the 3'-end of the repeat expansion. All other family members had inherited pure CTG repeats. The variant repeat-containing alleles were more stable in the blood than pure alleles of similar length, which may in part account for the mild symptoms observed in all three individuals. This emphasises the importance of somatic instability as a disease mechanism in DM1. Further, since patients with variant repeats may have unusually mild symptoms, identification of these individuals has important implications for genetic counselling and for patient stratification in DM1 clinical trials.


Subject(s)
Myotonic Dystrophy/genetics , Phenotype , Trinucleotide Repeat Expansion , Adult , Aged , Alleles , Female , Humans , Male , Middle Aged , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/genetics , Pedigree
4.
PLoS One ; 12(3): e0174166, 2017.
Article in English | MEDLINE | ID: mdl-28323905

ABSTRACT

OBJECTIVE: High sensitivity plasma cardiac troponin-I (cTnI) is emerging as a strong predictor of cardiac events in a variety of settings. We have explored its utility in patients with myotonic dystrophy type 1 (DM1). METHODS: 117 patients with DM1 were recruited from routine outpatient clinics across three health boards. A single measurement of cTnI was made using the ARCHITECT STAT Troponin I assay. Demographic, ECG, echocardiographic and other clinical data were obtained from electronic medical records. Follow up was for a mean of 23 months. RESULTS: Fifty five females and 62 males (mean age 47.7 years) were included. Complete data were available for ECG in 107, echocardiography in 53. Muscle Impairment Rating Scale score was recorded for all patients. A highly significant excess (p = 0.0007) of DM1 patients presented with cTnI levels greater than the 99th centile of the range usually observed in the general population (9 patients; 7.6%). Three patients with elevated troponin were found to have left ventricular systolic dysfunction (LVSD), compared with four of those with normal range cTnI (33.3% versus 3.7%; p = 0.001). Sixty two patients had a cTnI level < 5ng/L, of whom only one had documented evidence of LVSD. Elevated cTnI was not predictive of severe conduction abnormalities on ECG, or presence of a cardiac device, nor did cTnI level correlate with muscle strength expressed by Muscle Impairment Rating Scale score. CONCLUSIONS: Plasma cTnI is highly elevated in some ambulatory patients with DM1 and shows promise as a tool to aid cardiac risk stratification, possibly by detecting myocardial involvement. Further studies with larger patient numbers are warranted to assess its utility in this setting.


Subject(s)
Myocardium/pathology , Myotonic Dystrophy/pathology , Troponin I/blood , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/diagnosis , Adult , Aged , Biomarkers/blood , Echocardiography , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myotonin-Protein Kinase/genetics , Young Adult
5.
J Cell Sci ; 125(Pt 11): 2721-31, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22344253

ABSTRACT

Rho GTPases are regulated in complex spatiotemporal patterns that might be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialisation of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the orthologue of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localise differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck, but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localisation is largely dependent on Ack1, a SEL1-domain-containing protein; Tus1 function and localisation is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , rho GTP-Binding Proteins/metabolism , Gene Regulatory Networks/genetics , Mutation/genetics , Protein Transport , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Signal Transduction , Time Factors
6.
Eukaryot Cell ; 6(2): 262-70, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17172436

ABSTRACT

Pumilio family (PUF) proteins affect specific genes by binding to, and inhibiting the translation or stability of, their transcripts. The PUF domain is required and sufficient for this function. One Saccharomyces cerevisiae PUF protein, Mpt5p (also called Puf5p or Uth4p), promotes stress tolerance and replicative life span (the maximum number of doublings a mother cell can undergo before entering into senescence) by an unknown mechanism thought to partly overlap with, but to be independent of, the cell wall integrity (CWI) pathway. Here, we found that mpt5Delta mutants also display a short chronological life span (the time cells stay alive in saturated cultures in synthetic medium), a defect that is suppressed by activation of CWI signaling. We found that Mpt5p is an upstream activator of the CWI pathway: mpt5Delta mutants display the appropriate phenotypes and genetic interactions, display low basal activity of the pathway, and are defective in activation of the pathway upon thermal stress. A set of mRNAs that specifically bind to Mpt5p was recently reported. One such putative target, LRG1, encodes a GTPase-activating protein for Rho1p that directly links Mpt5p to CWI signaling: Lrg1p inhibits CWI signaling, LRG1 mRNA contains a consensus Mpt5p-binding site in its putative 3' untranslated region, loss of Lrg1p suppresses the temperature sensitivity and CWI signaling defects of mpt5Delta mutants, and LRG1 mRNA abundance is inhibited by Mpt5p. We conclude that Mpt5p is required for normal replicative and chronological life spans and that the CWI pathway is a key and direct downstream target of this PUF protein.


Subject(s)
Adaptation, Physiological , Cell Cycle Proteins/metabolism , Cell Wall/metabolism , Longevity/physiology , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/genetics , Cell Survival , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , GTPase-Activating Proteins , Gene Expression Regulation, Fungal , RNA-Binding Proteins , Repressor Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...