Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Viruses ; 15(7)2023 06 24.
Article in English | MEDLINE | ID: mdl-37515117

ABSTRACT

Emergent Coronaviridae viruses, such as SARS-CoV-1 in 2003, MERS-CoV in 2012, and SARS-CoV-2 (CoV-2) in 2019, have caused millions of deaths. These viruses have added to the existing respiratory infection burden along with respiratory syncytial virus (RSV) and influenza. There are limited therapies for respiratory viruses, with broad-spectrum treatment remaining an unmet need. Since gut fermentation of fiber produces short-chain fatty acids (SCFA) with antiviral potential, developing a fatty acid-based broad-spectrum antiviral was investigated. Molecular docking of fatty acids showed α-linolenic acid (ALA) is likely to interact with CoV-2-S, NL63-CoV-S, and RSV-F, and an ALA-containing liposome interacted with CoV-2 directly, degrading the particle. Furthermore, a combination of ALA and a SCFA-acetate synergistically inhibited CoV2-N expression and significantly reduced viral plaque formation and IL-6 and IL-1ß transcript expression in Calu-3 cells, while increasing the expression of IFN-ß. A similar effect was also observed in RSV-infected A549 cells. Moreover, mice infected with a murine-adapted SARS-CoV-2 (MA10) and treated with an ALA-liposome encapsulating acetate showed significant reductions in plaque-forming units present in lung tissue and in infection-associated lung inflammation and cytokines. Taken together, these results demonstrate that the ALA liposome-encapsulating acetate can be a promising broad antiviral therapy against respiratory infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Animals , Mice , SARS-CoV-2 , Liposomes , alpha-Linolenic Acid/therapeutic use , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Acetates
2.
Heliyon ; 9(6): e16116, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37265623

ABSTRACT

The digitalisation of healthcare services is a major resource to inform policy-makers. However, the availability of data and the establishment of a data flow present new issues to address, such as data anonymisation, records' reliability, and data linkage. The veterans' population in the UK presents complex needs and many organisations provide social and healthcare support, but their databases are not linked or aggregated to provide a comprehensive overview of service planning. This study aims to test the sensitivity and specificity of a Secure Hashing Algorithm to generate a unique anonymous identifier for data linkage across different organisations in the veterans' population. A Secure Hashing Algorithm was performed by considering two input variables from two different datasets. The uniqueness of the identifier was compared against the single personal key adopted as a current standard identifier. Chi-square, sensitivity, and specificity were calculated. The results demonstrated that the unique identifier generated by the Secure Hashing Algorithm detected more unique records when compared to the current gold standard. The identifier demonstrated optimal sensitivity and specificity and it allowed an enhanced data linkage between different datasets. The adoption of a Secure Hashing Algorithm improved the uniqueness of records. Moreover, it ensured data anonymity by transforming personal information into an encrypted identifier. This approach is beneficial for big data management and for creating an aggregated system for linking different organisations and, in this way, for providing a more comprehensive overview of healthcare provision and the foundation for precision public health strategies.

3.
Mol Ther Methods Clin Dev ; 27: 217-229, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36187720

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD). Herein, we report the brain gene expression profiles of severe COVID-19 patients showing increased expression of innate immune response genes and genes implicated in AD pathogenesis. The use of a mouse-adapted strain of SARS-CoV-2 (MA10) in an aged mouse model shows evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferon-inducible gene Ifi204, and complement genes C4 and C5AR1. Brain histopathology shows AD signatures including increased tau-phosphorylation, tau-oligomerization, and α-synuclein expression in aged MA10 infected mice. The results of gene expression profiling of SARS-CoV-2-infected and AD brains and studies in the MA10 aged mouse model taken together, for the first time provide evidence suggesting that SARS-CoV-2 infection alters expression of genes in the brain associated with the development of AD. Future studies of common molecular markers in SARS-CoV-2 infection and AD could be useful for developing novel therapies targeting AD.

4.
Sci Rep ; 12(1): 11935, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831374

ABSTRACT

Ultraviolet (UV) irradiation-based methods used for viral inactivation have provided an important avenue targeting severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) virus. A major problem with state-of-the-art UV inactivation technology is that it is based on UV lamps, which have limited efficiency, require high power, large doses, and long irradiation times. These drawbacks limit the use of UV lamps in air filtering systems and other applications. To address these limitations, herein we report on the fabrication of a device comprising a pulsed nanosecond 266 nm UV laser coupled to an integrating cavity (LIC) composed of a UV reflective material, polytetrafluoroethylene. Previous UV lamp inactivation cavities were based on polished walls with specular reflections, but the diffuse reflective UV ICs were not thoroughly explored for virus inactivation. Our results show that LIC device can inactivate several respiratory viruses including SARS-CoV-2, at ~ 1 ms effective irradiation time, with > 2 orders of magnitude higher efficiency compared to UV lamps. The demonstrated 3 orders of magnitude cavity enhancement relative to direct exposure is crucial for the development of efficient real-time UV air and water purification systems. To the best of our knowledge this is the first demonstration of LIC application for broad viral inactivation with high efficiency.


Subject(s)
COVID-19 , Viruses , Disinfection/methods , Humans , Lasers , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation/radiation effects
5.
Viruses ; 14(3)2022 03 04.
Article in English | MEDLINE | ID: mdl-35336938

ABSTRACT

The spike proteins of enveloped viruses are transmembrane glycoproteins that typically undergo post-translational attachment of palmitate on cysteine residues on the cytoplasmic facing tail of the protein. The role of spike protein palmitoylation in virus biogenesis and infectivity is being actively studied as a potential target of novel antivirals. Here, we report that palmitoylation of the first five cysteine residues of the C-terminal cysteine-rich domain of the SARS-CoV-2 S protein are indispensable for infection, and palmitoylation-deficient spike mutants are defective in membrane fusion. The DHHC9 palmitoyltransferase interacts with and palmitoylates the spike protein in the ER and Golgi and knockdown of DHHC9 results in reduced fusion and infection of SARS-CoV-2. Two bis-piperazine backbone-based DHHC9 inhibitors inhibit SARS-CoV-2 S protein palmitoylation and the resulting progeny virion particles released are defective in fusion and infection. This establishes these palmitoyltransferase inhibitors as potential new intervention strategies against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Lipoylation , Spike Glycoprotein, Coronavirus
6.
bioRxiv ; 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35313575

ABSTRACT

As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key towards sustenance. Here, we identify an evolutionary conserved E-L-L motif present within the HR2 domain of all human and non-human coronavirus spike (S) proteins that play a crucial role in stabilizing the post-fusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this E-L-L motif resulting in effective inhibition of SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy towards blocking S protein-mediated viral entry, mutations within the E-L-L motif rendered the protein completely resistant to the drug, establishing its specificity towards this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective towards all major variants of concerns of SARS-CoV-2 including beta, kappa, delta, and omicron. Together, we show that this conserved essential E-L-L motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.

7.
PNAS Nexus ; 1(5): pgac198, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712339

ABSTRACT

As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key toward sustenance. Here, we identify an evolutionarily conserved "Ex3Lx6L" ("E-L-L") motif present within the HR2 domain of all human and nonhuman coronavirus spike (S) proteins that play a crucial role in stabilizing its postfusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this "E-L-L" motif and impedes the formation of 6-HB, thus effectively inhibiting SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy in blocking S protein-mediated viral entry, mutations within the "E-L-L" motif rendered the protein completely resistant to the drug, establishing its specificity toward this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective toward all major variants of concerns of SARS-CoV-2, including Beta, Kappa, Delta, and Omicron. Together, we show that this conserved essential "E-L-L" motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.

8.
Front Immunol ; 12: 700705, 2021.
Article in English | MEDLINE | ID: mdl-34899680

ABSTRACT

A novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), arose late in 2019, with disease pathology ranging from asymptomatic to severe respiratory distress with multi-organ failure requiring mechanical ventilator support. It has been found that SARS-CoV-2 infection drives intracellular complement activation in lung cells that tracks with disease severity. However, the cellular and molecular mechanisms responsible remain unclear. To shed light on the potential mechanisms, we examined publicly available RNA-Sequencing data using CIBERSORTx and conducted a Ingenuity Pathway Analysis to address this knowledge gap. In complement to these findings, we used bioinformatics tools to analyze publicly available RNA sequencing data and found that upregulation of complement may be leading to a downregulation of T-cell activity in lungs of severe COVID-19 patients. Thus, targeting treatments aimed at the modulation of classical complement and T-cell activity may help alleviate the proinflammatory effects of COVID-19, reduce lung pathology, and increase the survival of COVID-19 patients.


Subject(s)
COVID-19/genetics , Complement Activation/genetics , Complement System Proteins/genetics , Gene Expression Profiling/methods , Lung/metabolism , T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/virology , Gene Regulatory Networks/genetics , Humans , Intracellular Space/genetics , Lung/immunology , Lung/microbiology , Lymphocyte Count , SARS-CoV-2/physiology , T-Lymphocyte Subsets/metabolism
9.
Cancers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071688

ABSTRACT

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.

10.
Infect Dis Rep ; 13(1): 102-125, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557330

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel coronavirus that emerged from Wuhan, China in late 2019 causing coronavirus disease-19 (COVID-19). SARS-CoV-2 infection begins by attaching to angiotensin-converting enzyme 2 receptor (ACE2) via the spike glycoprotein, followed by cleavage by TMPRSS2, revealing the viral fusion domain. Other presumptive receptors for SARS-CoV-2 attachment include CD147, neuropilin-1 (NRP1), and Myeloid C-lectin like receptor (CLR), each of which might play a role in the systemic viral spread. The pathology of SARS-CoV-2 infection ranges from asymptomatic to severe acute respiratory distress syndrome, often displaying a cytokine storm syndrome, which can be life-threatening. Despite progress made, the detailed mechanisms underlying SARS-CoV-2 interaction with the host immune system remain unclear and are an area of very active research. The process's key players include viral non-structural proteins and open reading frame products, which have been implicated in immune antagonism. The dysregulation of the innate immune system results in reduced adaptive immune responses characterized by rapidly diminishing antibody titers. Several treatment options for COVID-19 are emerging, with immunotherapies, peptide therapies, and nucleic acid vaccines showing promise. This review discusses the advances in the immunopathology of SARS-CoV-2, vaccines and therapies under investigation to counter the effects of this virus, as well as viral variants.

11.
Nanomedicine ; 32: 102325, 2021 02.
Article in English | MEDLINE | ID: mdl-33186695

ABSTRACT

Respiratory Syncytial Virus (RSV) has been a major health concern globally for decades, yet no effective prophylactic or treatment regimen is available. The key viral proteins responsible for RSV pathology include the fusion protein (F), the immunomodulatory non-structural-protein 1 (NS1) and the phosphoprotein (P) involved in viral replication. Herein, we developed a novel shell-core multifunctional nanosystem with dual payload: a plasmid construct encoding for shRNAs against NS1 and P, and an anti-fusion peptide (HR2D). Anti-ICAM1 antibody conjugated on the nanoparticle (NP) surface is used to target RSV infected cells. Our data show the potential of this nanosystem as a prophylactic and/or a therapeutic regimen against RSV infection. Furthermore, therapy of RSV infected mice with this nanosystem, in addition to reducing viral load, modulated expression of Th2 and allergy-associated cytokines such as IL4, IL-13 and IL-17 indicating a direct role of this nanosystem in the mechanisms involved in the immunoregulation of disease pathogenesis.


Subject(s)
Multifunctional Nanoparticles/therapeutic use , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/physiology , Animals , Cytokines/metabolism , Drug Liberation , Female , Inflammation Mediators/metabolism , Intercellular Adhesion Molecule-1/metabolism , Mice, Inbred BALB C , Multifunctional Nanoparticles/ultrastructure , Peptides/pharmacology , Plasmids/genetics , RNA, Small Interfering/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Transfection , Viral Fusion Proteins/metabolism
12.
Bone Joint J ; 102-B(5): 580-585, 2020 May.
Article in English | MEDLINE | ID: mdl-32349604

ABSTRACT

AIMS: The aim of this study was to identify modifiable risk factors associated with mortality in patients requiring revision total hip arthroplasty (THA) for periprosthetic hip fracture. METHODS: The electronic records of consecutive patients undergoing revision THA for periprosthetic hip fracture between December 2011 and October 2018 were reviewed. The data which were collected included age, sex, body mass index (BMI), American Society of Anesthesiologists (ASA) classification, the preoperative serum level of haemoglobin, time to surgery, operating time, blood transfusion, length of hospital stay, and postoperative surgical and medical complications. Univariate and multivariate logistic regression analyses were used to determine independent modifiable factors associated with mortality at 90 days and one year postoperatively. RESULTS: A total of 203 patients were identified. Their mean age was 78 years (44 to 100), and 108 (53%) were female. The median time to surgery was three days (interquartile range (IQR) 2 to 5). The mortality rate at one year was 13.8% (n = 28). The commonest surgical complication was dislocation (n = 22, 10.8%) and the commonest medical complication within 90 days of surgery was hospital-acquired pneumonia (n = 25, 12%). Multivariate analysis showed that the rate of mortality one year postoperatively was five-fold higher in patients who sustained a dislocation (odds ratio (OR) 5.03 (95% confidence interval (CI) 1.60 to 15.83); p = 0.006). The rate of mortality was also four-fold higher in patients who developed hospital-acquired pneumonia within 90 days postoperatively (OR 4.43 (95% CI 1.55 to 12.67); p = 0.005). There was no evidence that the time to surgery was a risk factor for death at one year. CONCLUSION: Dislocation and hospital-acquired pneumonia following revision THA for a periprosthetic fracture are potentially modifiable risk factors for mortality. This study suggests that surgeons should consider increasing constraint to reduce the risk of dislocation, and the early involvement of a multidisciplinary team to reduce the risk of hospital-acquired pneumonia. We found no evidence that the time to surgery affected mortality, which may allow time for medical optimization, surgical planning, and resource allocation. Cite this article: Bone Joint J 2020;102-B(5):580-585.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Fractures/mortality , Hip Fractures/surgery , Periprosthetic Fractures/mortality , Periprosthetic Fractures/surgery , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Reoperation , Risk Factors
14.
Appl Sci (Basel) ; 10(14)2020.
Article in English | MEDLINE | ID: mdl-38486792

ABSTRACT

The burgeoning field of nanotechnology aims to create and deploy nanoscale structures, devices, and systems with novel, size-dependent properties and functions. The nanotechnology revolution has sparked radically new technologies and strategies across all scientific disciplines, with nanotechnology now applied to virtually every area of research and development in the US and globally. NanoFlorida was founded to create a forum for scientific exchange, promote networking among nanoscientists, encourage collaborative research efforts across institutions, forge strong industry-academia partnerships in nanoscience, and showcase the contributions of students and trainees in nanotechnology fields. The 2019 NanoFlorida International Conference expanded this vision to emphasize national and international participation, with a focus on advances made in translating nanotechnology. This review highlights notable research in the areas of engineering especially in optics, photonics and plasmonics and electronics; biomedical devices, nano-biotechnology, nanotherapeutics including both experimental nanotherapies and nanovaccines; nano-diagnostics and -theranostics; nano-enabled drug discovery platforms; tissue engineering, bioprinting, and environmental nanotechnology, as well as challenges and directions for future research.

15.
PLoS One ; 12(2): e0170197, 2017.
Article in English | MEDLINE | ID: mdl-28152014

ABSTRACT

Pancreatic cancer (PC) evades immune destruction by favoring the development of regulatory T cells (Tregs) that inhibit effector T cells. The transcription factor Ikaros is critical for lymphocyte development, especially T cells. We have previously shown that downregulation of Ikaros occurs as a result of its protein degradation by the ubiquitin-proteasome system in our Panc02 tumor-bearing (TB) mouse model. Mechanistically, we observed a deregulation in the balance between Casein Kinase II (CK2) and protein phosphatase 1 (PP1), which suggested that increased CK2 activity is responsible for regulating Ikaros' stability in our model. We also showed that this loss of Ikaros expression is associated with a significant decrease in CD4+ and CD8+ T cell percentages but increased CD4+CD25+ Tregs in TB mice. In this study, we evaluated the effects of the dietary flavonoid apigenin (API), on Ikaros expression and T cell immune responses. Treatment of splenocytes from naïve mice with (API) stabilized Ikaros expression and prevented Ikaros downregulation in the presence of murine Panc02 cells in vitro, similar to the proteasome inhibitor MG132. In vivo treatment of TB mice with apigenin (TB-API) improved survival, reduced tumor weights and prevented splenomegaly. API treatment also restored protein expression of some Ikaros isoforms, which may be attributed to its moderate inhibition of CK2 activity from splenocytes of TB-API mice. This partial restoration of Ikaros expression was accompanied by a significant increase in CD4+ and CD8+ T cell percentages and a reduction in Treg percentages in TB-API mice. In addition, CD8+ T cells from TB-API mice produced more IFN-γ and their splenocytes were better able to prime allogeneic CD8+ T cell responses compared to TB mice. These results provide further evidence that Ikaros is regulated by CK2 in our pancreatic cancer model. More importantly, our findings suggest that API may be a possible therapeutic agent for stabilizing Ikaros expression and function to maintain T cell homeostasis in murine PC.


Subject(s)
Apigenin/therapeutic use , Casein Kinase II/antagonists & inhibitors , Ikaros Transcription Factor/metabolism , Pancreatic Neoplasms/drug therapy , T-Lymphocytes/drug effects , Animals , Cell Line, Tumor , Down-Regulation/drug effects , Female , Homeostasis/drug effects , Leupeptins/therapeutic use , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Proteasome Inhibitors/therapeutic use , Protein Phosphatase 1/metabolism , T-Lymphocytes/immunology , Tumor Suppressor Proteins/metabolism
16.
World J Gastroenterol ; 12(36): 5866-9, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17007054

ABSTRACT

AIM: To discover the causes of markedly raised ferritin levels in patients seen at a teaching hospital in Newcastle Upon Tyne, United Kingdom. METHODS: Demographic and medical data were collected for all patients over 18 years who had a serum ferritin levels recorded as >=1500 microg/L during the period January to September 2002. The cause or causes for their hyperferritinaemia were identified from their medical notes. Patients from a defined local population were identified. RESULTS: A total of 19583 measurements were provided of which 406 from 199 patients were >=1500 microg/L. An annual incidence for the local population was determined to be 0.44/1000. 150/199 medical notes were scrutinised and 81 patients were identified as having a single cause for their raised ferritin level. The most common single cause was alcoholic liver disease in the local population and renal failure was the most common single cause in the overall population. Confirmed hereditary haemochromatosis was the 10th most common cause. Liver disease contributed to hyperferritinaemia in 44% of the patients. Weight loss may have contributed to hyperferritinaemia in up to 11%. CONCLUSION: Alcohol related liver disease, haemat-ological disease, renal failure and neoplasia are much more common causes of marked hyperferritinaemia than haemochromatosis. The role of weight loss in hyperferritinaemia may warrant further investigation.


Subject(s)
Ferritins/blood , Iron Metabolism Disorders/epidemiology , Iron Metabolism Disorders/etiology , Female , Hematologic Diseases/complications , Hematologic Diseases/epidemiology , Hemochromatosis/complications , Hemochromatosis/epidemiology , Humans , Incidence , Iron Metabolism Disorders/blood , Liver Cirrhosis, Alcoholic/complications , Liver Cirrhosis, Alcoholic/epidemiology , Male , Middle Aged , Renal Insufficiency/complications , Renal Insufficiency/epidemiology , United Kingdom , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...