Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(34): eadg3247, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37611094

ABSTRACT

Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.


Subject(s)
Octopodiformes , Animals , Female , Dietary Supplements , Earth, Planet , Ecology , Incubators , Water
2.
J Acoust Soc Am ; 151(3): 2077, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35364936

ABSTRACT

Passive acoustic monitoring generates large data sets for which decimation is beneficial to analysis and portability for data sharing. Among the goals for effective decimation are avoidance of aliasing in the passband, accurate and complete control of the attenuation profile, phase preservation, and high efficiency in processing. We present an approach to decimator design that addresses each of these goals, and we demonstrate its application to ocean audio recordings. Anti-aliasing is achieved by windowed-sinc filters that also preserve phase. Control of the passband attenuation profile is based on the specification of the maximum allowed attenuation at a certain percentage of the final output Nyquist frequency. The window type is selected to meet the stopband attenuation requirement. Efficiency is achieved through optimization of the anti-aliasing filters applied in each decimation stage, and through parallelization of processing. The best combination of the sinc function's cutoff frequency and the mainlobe bandwidth of the window function generates the shortest qualifying filter, optimizing the trade-off between filter performance and computational load. Parallelization is enabled by applying the overlap-add method to contiguous segments of audio data, consistent with the commonly used storage of contiguous audio data in files of limited duration. Beyond addressing common goals for effective decimation of audio data, the approach presented is deployable in open-source environments.

3.
Integr Comp Biol ; 59(4): 751-764, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31268144

ABSTRACT

Sponges perceive and respond to a range of stimuli. How they do this is still difficult to pin down despite now having transcriptomes and genomes of an array of species. Here we evaluate the current understanding of sponge behavior and present new observations on sponge activity in situ. We also explore biosynthesis pathways available to sponges from data in genomes/transcriptomes of sponges and other non-bilaterians with a focus on exploring the role of chemical signaling pathways mediating sponge behavior and how such chemical signal pathways may have evolved. Sponge larvae respond to light but opsins are not used, nor is there a common photoreceptor molecule or mechanism used across sponge groups. Other cues are gravity and chemicals. In situ recordings of behavior show that both shallow and deep-water sponges move a lot over minutes and hours, and correlation of behavior with temperature, pressure, oxygen, and water movement suggests that at least one sponge responds to changes in atmospheric pressure. The sensors for these cues as far as we know are individual cells and, except in the case of electrical signaling in Hexactinellida, these most likely act as independent effectors, generating a whole-body reaction by the global reach of the stimulus to all parts of the animal. We found no evidence for use of conventional neurotransmitters such as serotonin and dopamine. Intriguingly, some chemicals synthesized by symbiont microbes could mean other more complex signaling occurs, but how that interplay might happen is not understood. Our review suggests chemical signaling pathways found in sponges do not reflect loss of a more complex set.


Subject(s)
Genome , Movement/physiology , Porifera/physiology , Transcriptome , Animals , Porifera/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...