Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 27(7): 1985-2000, 2017 10.
Article in English | MEDLINE | ID: mdl-28667790

ABSTRACT

Many rockfish species are long-lived and thought to be susceptible to being overfished. Hypotheses about the importance of older female rockfish to population persistence have led to arguments that marine reserves are needed to ensure the sustainability of rockfish populations. However, the implications of these hypotheses for rockfish population dynamics are still unclear. We modeled two mechanisms by which reducing the proportion of older fish in a population has been hypothesized to influence sustainability, and explored whether these mechanisms influenced mean population dynamics and recruitment variability. We explored whether populations with these mechanisms could be managed more sustainably with a marine reserve in addition to a constant fishing mortality rate (F) than with a constant F alone. Both hypotheses can be seen as portfolio effects whereby risk of recruitment failure is spread over a "portfolio" of maternal ages. First, we modeled a spawning window effect whereby mothers of different ages spawned in different times or locations (windows) with local environmental conditions. Second, we modeled an offspring size effect whereby older mothers produced larger offspring than younger mothers, where length of a starvation period over which offspring could survive increased with maternal age. Recruitment variability resulting from both models was 55-65% lower than for models without maternal age-related portfolio effects in the absence of fishing and increased with increases in Fs for both models. An offspring size effect caused lower output reproductive rates such that the specified reproductive rate input as a model parameter was no longer the realized rate measured as the reproductive rate observed in model results; this quirk is not addressed in previous analyses of offspring size effects. We conducted a standardization such that offspring size effect and control models had the same observed reproductive rates. A comparison of long-term catch, the probability of falling below a biomass threshold, and recruitment variability over a range of exploitation rates for models with an age-related portfolio effect showed no benefit of a marine reserve implemented in addition to a constant F (as compared to a constant F alone) for populations with sedentary adults and sedentary or mobile larvae.


Subject(s)
Body Size , Conservation of Natural Resources , Fisheries , Fishes/physiology , Reproduction , Age Factors , Animals , Models, Biological , Population Dynamics , Stochastic Processes
2.
Ecol Appl ; 21(4): 1399-409, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21774438

ABSTRACT

Catastrophic events such as oil spills, hypoxia, disease, and major predation events occur in marine ecosystems and affect fish populations. Previous evaluations of the performance of spatial management alternatives have not considered catastrophic events. We investigate the effects of local and global catastrophic events on populations managed with and without no-take marine reserves and with fishing mortality rates that are optimized accounting for reserves. A spatial population dynamics model is used to explore effects of large, catastrophic natural mortality events. The effects of the spatial spread, magnitude, probability of catastrophe, and persistence of a catastrophic event through time are explored. Catastrophic events affecting large spatial areas and those that persist through time have the greatest effects on population dynamics because they affect natural mortality nonlinearly, whereas the probability and magnitude of catastrophic events result in only linear increases in natural mortality. The probability of falling below 10% or 20% of unfished abundance was greatest when a no-take marine reserve was implemented with no additional fishing regulations and least when a no-take marine reserve was implemented in addition to the maintenance of optimal fishing mortality in fished areas. In the absence of implementation error, maintaining abundance across space using restrictions on fishing mortality rates, regardless of the existence of a no-take marine reserve, decreased the probability of falling below 10% or 20% of unfished abundance.


Subject(s)
Disasters , Ecosystem , Models, Biological , Animals , Fisheries , Fishes/physiology , Oceans and Seas , Population Dynamics
3.
Nature ; 468(7322): 431-5, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-21085178

ABSTRACT

Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.


Subject(s)
Aquatic Organisms/isolation & purification , Aquatic Organisms/metabolism , Ecosystem , Fisheries , Fishes , Animals , Biodiversity , Biomass , Databases, Factual , Environmental Policy , Fishes/metabolism , Food Chain , Human Activities , Invertebrates/metabolism , Models, Biological , Plankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...