Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Pediatr Res ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356025

ABSTRACT

BACKGROUND: Manual tactile stimulation is used to counteract apnea in preterm infants, but it is unknown when this intervention should be applied. We compared an anticipatory to a reactive approach using vibrotactile stimulation to prevent hypoxia induced apneas. METHODS: Preterm rabbit kittens were prematurely delivered and randomized to either group. All kittens breathed spontaneously with a positive airway pressure of 8 cmH2O while they were imaged using phase contrast X-ray. Irregular breathing (IB) was induced using gradual hypoxia. The anticipatory group received stimulation at the onset of IB and the reactive group if IB transitioned into apnea. Breathing rate (BR), heart rate (HR) and functional residual capacity (FRC) were compared. RESULTS: Anticipatory stimulation significantly reduced apnea incidence and maximum inter-breath intervals and increased BR following IB, compared to reactive stimulation. Recovery in BR but not HR was more likely with anticipatory stimulation, although both BR and HR were significantly higher at 120 s after stimulation onset. FRC values and variability were not different. CONCLUSIONS: Anticipated vibrotactile stimulation is more effective in preventing apnea and enhancing breathing when compared to reactive stimulation in preterm rabbits. Stimulation timing is likely to be a key factor in reducing the incidence and duration of apnea. IMPACT: Anticipated vibrotactile stimulation can prevent apnea and stimulate breathing effort in preterm rabbits. Anticipated vibrotactile stimulation increases the likelihood of breathing rate recovery following hypoxia induced irregular breathing, when compared to reactive stimulation. Automated stimulation in combination with predictive algorithms may improve the treatment of apnea in preterm infants.

2.
Pediatr Res ; 95(3): 660-667, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37952056

ABSTRACT

BACKGROUND: Infants with a congenital diaphragmatic hernia (DH) have underdeveloped lungs and require mechanical ventilation after birth, but the optimal approach is unknown. We hypothesised that sustained inflation (SI) increases lung aeration in newborn kittens with a DH. METHODS: In pregnant New Zealand white rabbits, a left-sided DH was induced in two fetal kittens per doe at 24-days gestation (term = 32 days); litter mates acted as controls. DH and control kittens were delivered by caesarean section at 30 days, intubated and mechanically ventilated (7-10 min) with either an SI followed by intermittent positive pressure ventilation (IPPV) or IPPV throughout. The rate and uniformity of lung aeration was measured using phase-contrast X-ray imaging. RESULTS: Lung weights in DH kittens were ~57% of controls. An SI increased the rate and uniformity of lung aeration in DH kittens, compared to IPPV, and increased dynamic lung compliance in both control and DH kittens. However, this effect of the SI was lost when ventilation changed to IPPV. CONCLUSION: While an SI improved the rate and uniformity of lung aeration in both DH and control kittens, greater consideration of the post-SI ventilation strategy is required to sustain this benefit. IMPACT: Compared to intermittent positive pressure ventilation (IPPV), an initial sustained inflation (SI) increased the rate and uniformity of lung aeration after birth. However, this initial benefit is rapidly lost following the switch to IPPV. The optimal approach for ventilating CDH infants at birth is unknown. While an SI improves lung aeration in immature lungs, its effect on the hypoplastic lung is unknown. This study has shown that an SI greatly improves lung aeration in the hypoplastic lung. This study will guide future studies examining whether an SI can improve lung aeration in infants with a CDH.


Subject(s)
Hernias, Diaphragmatic, Congenital , Humans , Rabbits , Animals , Pregnancy , Female , Hernias, Diaphragmatic, Congenital/diagnostic imaging , Hernias, Diaphragmatic, Congenital/therapy , Animals, Newborn , Cesarean Section , Lung/diagnostic imaging , Respiration, Artificial/methods
3.
Anat Rec (Hoboken) ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688449

ABSTRACT

Congenital diaphragmatic hernia (CDH) is a major cause of severe lung hypoplasia and pulmonary hypertension in the newborn. While the pulmonary hypertension is thought to result from abnormal vascular development and arterial vasoreactivity, the anatomical changes in vascular development are unclear. We have examined the 3D structure of the pulmonary arterial tree in rabbits with a surgically induced diaphragmatic hernia (DH). Fetal rabbits (n = 6) had a left-sided DH created at gestational day 23 (GD23), delivered at GD30, and briefly ventilated; sham-operated litter mates (n = 5) acted as controls. At postmortem the pulmonary arteries were filled with a radio-opaque resin before the lungs were scanned using computed tomography (CT). The 3D reconstructed images were analyzed based on vascular branching hierarchy using the software Avizo 2020.2. DH significantly reduced median number of arteries (2,579 (8440) versus 576 (442), p = .017), artery numbers per arterial generation, mean total arterial volume (43.5 ± 8.4 vs. 19.9 ± 3.1 µl, p = .020) and mean total arterial cross-sectional area (82.5 ± 2.3 vs. 28.2 ± 6.2 mm2 , p =.036). Mean arterial radius was increased in DH kittens between the eighth and sixth branching generation and mean arterial length between the sixth and 28th branching generation. A DH in kittens resulted in threefold reduction in pulmonary arterial cross-sectional area, primarily due to reduced arterial branching. Thus, the reduction in arterial cross-sectional area could be a major contributor to pulmonary hypertension infants with CDH.

5.
Front Pediatr ; 10: 878536, 2022.
Article in English | MEDLINE | ID: mdl-35813383

ABSTRACT

Respiratory distress in the first few hours of life is a growing disease burden in otherwise healthy babies born at term (>37 weeks gestation). Babies born by cesarean section without labor (i.e., elective cesarean section) are at greater risk of developing respiratory distress due to elevated airway liquid volumes at birth. These babies are commonly diagnosed with transient tachypnea of the newborn (TTN) and historically treatments have mostly focused on enhancing airway liquid clearance pharmacologically or restricting fluid intake with limited success. Alternatively, a number of clinical studies have investigated the potential benefits of respiratory support in newborns with or at risk of TTN, but there is considerable heterogeneity in study designs and outcome measures. A literature search identified eight clinical studies investigating use of respiratory support on outcomes related to TTN in babies born at term. Study demographics including gestational age, mode of birth, antenatal corticosteroid exposure, TTN diagnosis, timing of intervention (prophylactic/interventional), respiratory support (type/interface/device/pressure), and study outcomes were compared. This narrative review provides an overview of factors within and between studies assessing respiratory support for preventing and/or treating TTN. In addition, we discuss the physiological understanding of how respiratory support aids lung function in newborns with elevated airway liquid volumes at birth. However, many questions remain regarding the timing of onset, pressure delivered, device/interface used and duration, and weaning of support. Future studies are required to address these gaps in knowledge to provide evidenced based recommendations for management of newborns with or at risk of TTN.

6.
J Appl Physiol (1985) ; 132(4): 1080-1090, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35271407

ABSTRACT

Respiratory distress is relatively common in infants born at or near-term, particularly in infants delivered following elective cesarean section. The pathophysiology underlying respiratory distress at term has largely been explained by a failure to clear airway liquid, but recent physiological evidence has indicated that it results from elevated airway liquid at the onset of air-breathing. We have investigated the effect of elevated airway liquid volumes at birth on cardiorespiratory function in preterm and near-term lambs. Preterm (130 ± 0 days gestation, term ∼147 days gestation; n = 12) and near-term (139 ± 1 days gestation; n = 13) lambs were instrumented (to measure blood pressure, blood flow, and blood gas status) and, at delivery, airway liquid volumes were adjusted to mimic levels expected following vaginal delivery (Controls; ∼7 mL/kg) or elective cesarean section with no labor (elevated liquid (EL); 37 mL/kg). Lambs were delivered, mechanically ventilated, and monitored for blood gas status, oxygenation, ventilator requirements, blood flows (carotid artery and pulmonary artery), and blood pressure during the first few hours of life. Preterm and near-term EL lambs had poorer gas exchange and required greater ventilatory support to maintain adequate oxygenation. Pulmonary blood flow was reduced and carotid artery blood flow, mean arterial blood pressure, and heart rate were reduced in EL near-term but not preterm lambs. These data provide further evidence that greater airway liquid volumes at birth adversely affect newborn cardiorespiratory function, with the effects being greater in near-term newborns.NEW & NOTEWORTHY We provide evidence for adverse effects of elevated airway liquid volumes at birth on pulmonary blood flow and gas exchange in both preterm and near-term lambs, although the effects were greatest in near-term newborns. Our study is an important step toward understanding the fundamental physiology underlying the cardiorespiratory morbidity associated with near-term newborns with elevated airway liquid volumes leading to respiratory distress soon after birth.


Subject(s)
Cesarean Section , Respiratory Distress Syndrome , Animals , Animals, Newborn , Female , Humans , Lung , Pregnancy , Sheep , Tidal Volume
7.
Pediatr Res ; 91(4): 828-838, 2022 03.
Article in English | MEDLINE | ID: mdl-33859366

ABSTRACT

BACKGROUND: In the fetus, the appropriate balance of prooxidants and antioxidants is essential to negate the detrimental effects of oxidative stress on lung maturation. Antioxidants improve respiratory function in postnatal life and adulthood. However, the outcomes and biological mechanisms of antioxidant action in the fetal lung are unknown. METHODS: We investigated the effect of maternal daily vitamin C treatment (200 mg/kg, intravenously) for a month in late gestation (105-138 days gestation, term ~145 days) on molecular regulation of fetal lung maturation in sheep. Expression of genes and proteins regulating lung development was quantified in fetal lung tissue. The number of surfactant-producing cells was determined by immunohistochemistry. RESULTS: Maternal vitamin C treatment increased fetal lung gene expression of the antioxidant enzyme SOD-1, hypoxia signaling genes (HIF-2α, HIF-3α, ADM, and EGLN-3), genes regulating sodium movement (SCNN1-A, SCNN1-B, ATP1-A1, and ATP1-B1), surfactant maturation (SFTP-B and ABCA3), and airway remodeling (ELN). There was no effect of maternal vitamin C treatment on the expression of protein markers evaluated or on the number of surfactant protein-producing cells in fetal lung tissue. CONCLUSIONS: Maternal vitamin C treatment in the last third of pregnancy in sheep acts at the molecular level to increase the expression of genes that are important for fetal lung maturation in a healthy pregnancy. IMPACT: Maternal daily vitamin C treatment for a month in late gestation in sheep increases the expression of gene-regulating pathways that are essential for normal fetal lung development. Following late gestation vitamin C exposure in a healthy pregnancy, an increase in lung gene but not protein expression may act as a mechanism to aid in the preparation for exposure to the air-breathing environment after birth. In the future, the availability/development of compounds with greater antioxidant properties than vitamin C or more specific targets at the site of oxidative stress in vivo may translate clinically to improve respiratory outcomes in complicated pregnancies at birth.


Subject(s)
Antioxidants , Pulmonary Surfactants , Adult , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Female , Fetus/metabolism , Humans , Lung , Pregnancy , Pulmonary Surfactants/metabolism , Sheep , Surface-Active Agents
8.
Pediatr Res ; 91(7): 1686-1694, 2022 06.
Article in English | MEDLINE | ID: mdl-34294868

ABSTRACT

BACKGROUND: Preterm infants are commonly supported with 4-8 cm H2O continuous positive airway pressures (CPAP), although higher CPAP levels may improve functional residual capacity (FRC). METHODS: Preterm rabbits delivered at 29/32 days (~26-28 weeks human) gestation received 0, 5, 8, 12, 15 cm H2O of CPAP or variable CPAP of 15 to 5 or 15 to 8 cm H2O (decreasing ~2 cm H2O/min) for up to 10 min after birth. RESULTS: FRC was lower in the 0 (6.8 (1.0-11.2) mL/kg) and 5 (10.1 (1.1-16.8) mL/kg) compared to the 15 (18.8 (10.9-22.4) mL/kg) cm H2O groups (p = 0.003). Fewer kittens achieved FRC > 15 mL/kg in the 0 (20%), compared to 8 (36%), 12 (60%) and 15 (73%) cm H2O groups (p = 0.008). While breathing rates were not different (p = 0.096), apnoea tended to occur more often with CPAP < 8 cm H2O (p = 0.185). CPAP belly and lung bulging rates were similar whereas pneumothoraces were rare. Lowering CPAP from 15 to 5, but not 15 to 8 cm H2O, decreased FRC and breathing rates. CONCLUSION: In all, 15 cm H2O of CPAP improved lung aeration and reduced apnoea, but did not increase the risk of lung over-expansion, pneumothorax or CPAP belly immediately after birth. FRC and breathing rates were maintained when CPAP was decreased to 8 cm H2O. IMPACT: Although preterm infants are commonly supported with 4-8 cm H2O CPAP at birth, preclinical studies have shown that higher PEEP levels improve lung aeration. In this study, CPAP levels of 15 cm H2O improved lung aeration and reduced apnoea in preterm rabbit kittens immediately after birth. In all, 15 cm H2O CPAP did not increase the risk of lung over-expansion (indicated by bulging between the ribs), pneumothorax, or CPAP belly. These results can be used when designing future studies on CPAP strategies for preterm infants in the delivery room.


Subject(s)
Apnea , Pneumothorax , Animals , Continuous Positive Airway Pressure , Functional Residual Capacity , Humans , Infant, Newborn , Infant, Premature , Rabbits
9.
J Appl Physiol (1985) ; 131(3): 997-1008, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34351817

ABSTRACT

Approximately 53% of near-term newborns admitted to intensive care experience respiratory distress. These newborns are commonly delivered by cesarean section and have elevated airway liquid volumes at birth, which can cause respiratory morbidity. We investigated the effect of providing respiratory support with a positive end-expiratory pressure (PEEP) of 8 cmH2O on lung function in newborn rabbit kittens with elevated airway liquid volumes at birth. Near-term rabbits (30 days; term = 32 days) with airway liquid volumes that corresponded to vaginal delivery (∼7 mL/kg, control, n = 11) or cesarean section [∼37 mL/kg; elevated liquid (EL), n = 11] were mechanically ventilated (tidal volume = 8 mL/kg). The PEEP was changed after lung aeration from 0 to 8 to 0 cmH2O (control, n = 6; EL, n = 6), and in a separate group of kittens, PEEP was changed after lung aeration from 8 to 0 to 8 cmH2O (control, n = 5; EL, n = 5). Lung function (ventilator parameters, compliance, lung gas volumes, and distribution of gas within the lung) was evaluated using plethysmography and synchrotron-based phase-contrast X-ray imaging. EL kittens initially receiving 0 cmH2O PEEP had reduced functional residual capacities and lung compliance, requiring higher inflation pressures to aerate the lung compared with control kittens. Commencing ventilation with 8 cmH2O PEEP mitigated the adverse effects of EL, increasing lung compliance, functional residual capacity, and the uniformity and distribution of lung aeration, but did not normalize aeration of the distal airways. Respiratory support with PEEP supports lung function in near-term newborn rabbits with elevated airway liquid volumes at birth who are at a greater risk of suffering respiratory distress.NEW & NOTEWORTHY Term babies born by cesarean section have elevated airway liquid volumes, which predisposes them to respiratory distress. Treatments targeting molecular mechanisms to clear lung liquid are ineffective for term newborn respiratory distress. We showed that respiratory support with an end-expiratory pressure supports lung function in near-term rabbits with elevated airway liquid volumes at birth. This study provides further physiological understanding of lung function in newborns with elevated airway liquid volumes at risk of respiratory distress.


Subject(s)
Cesarean Section , Lung , Animals , Animals, Newborn , Female , Functional Residual Capacity , Pregnancy , Rabbits , Tidal Volume
10.
PLoS One ; 16(6): e0253306, 2021.
Article in English | MEDLINE | ID: mdl-34138957

ABSTRACT

BACKGROUND: Delayed umbilical cord clamping (UCC) after birth is thought to cause placental to infant blood transfusion, but the mechanisms are unknown. It has been suggested that uterine contractions force blood out of the placenta and into the infant during delayed cord clamping. We have investigated the effect of uterine contractions, induced by maternal oxytocin administration, on umbilical artery (UA) and venous (UV) blood flows before and after ventilation onset to determine whether uterine contractions cause placental transfusion in preterm lambs. METHODS AND FINDINGS: At ~128 days of gestation, UA and UV blood flows, pulmonary arterial blood flow (PBF) and carotid arterial (CA) pressures and blood flows were measured in three groups of fetal sheep during delayed UCC; maternal oxytocin following mifepristone, mifepristone alone, and saline controls. Each successive uterine contraction significantly (p<0.05) decreased UV (26.2±6.0 to 14.1±4.5 mL.min-1.kg-1) and UA (41.2±6.3 to 20.7 ± 4.0 mL.min-1.kg-1) flows and increased CA pressure and flow (47.1±3.4 to 52.8±3.5 mmHg and 29.4±2.6 to 37.3±3.4 mL.min-1.kg-1). These flows and pressures were partially restored between contractions, but did not return to pre-oxytocin administration levels. Ventilation onset during DCC increased the effects of uterine contractions on UA and UV flows, with retrograde UA flow (away from the placenta) commonly occurring during diastole. CONCLUSIONS: We found no evidence that amplification of uterine contractions with oxytocin increase placental transfusion during DCC. Instead they decreased both UA and UV flow and caused a net loss of blood from the lamb. Uterine contractions did, however, have significant cardiovascular effects and reduced systemic and cerebral oxygenation.


Subject(s)
Oxytocics/administration & dosage , Oxytocin/administration & dosage , Regional Blood Flow/drug effects , Umbilical Arteries/drug effects , Umbilical Veins/drug effects , Uterine Contraction/drug effects , Animals , Animals, Newborn , Female , Mifepristone/pharmacology , Pregnancy , Sheep
11.
J Dev Orig Health Dis ; 12(2): 153-167, 2021 04.
Article in English | MEDLINE | ID: mdl-32955011

ABSTRACT

Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.


Subject(s)
Biomedical Research/trends , Diagnostic Imaging/methods , Fetal Diseases/diagnosis , Fetus/pathology , Female , Fetal Diseases/diagnostic imaging , Fetus/diagnostic imaging , Humans , Pregnancy , Societies, Scientific
12.
Front Pediatr ; 8: 516698, 2020.
Article in English | MEDLINE | ID: mdl-33194881

ABSTRACT

Respiratory support is critically important for survival of newborns who fail to breathe spontaneously at birth. Although there is no internationally accepted definition of a sustained inflation (SI), it has commonly been defined as a positive pressure inflation designed to establish functional residual capacity and applied over a longer time period than normally used in standard respiratory support (SRS). Outcomes vary distinctly between studies and to date there has been no comprehensive investigation of differences in SI approach and study outcome in both pre-clinical and clinical studies. A systematic literature search was performed and, after screening, identified 17 animal studies and 17 clinical studies evaluating use of a SI in newborns compared to SRS during neonatal resuscitation. Study demographics including gestational age, SI parameters (length, repetitions, pressure, method of delivery) and study outcomes were compared. Animal studies provide mechanistic understanding of a SI on the physiology underpinning the cardiorespiratory transition at birth. In clinical studies, there is considerable difference in study quality, delivery of SIs (number, pressure, length) and timing of primary outcome evaluation which limits direct comparison between studies. The largest difference is method of delivery, where the role of a SI has been observed in intubated animals, as the inflation pressure is directly applied to the lung, bypassing the obstructed upper airway in an apnoeic state. This highlights a potential limitation in clinical use of a SI applied non-invasively. Further research is required to identify if a SI may have greater benefits in subpopulations of newborns.

13.
Front Pediatr ; 8: 584983, 2020.
Article in English | MEDLINE | ID: mdl-33194919

ABSTRACT

Background: Physiologic-based cord clamping (PBCC) involves deferring umbilical cord clamping until after lung aeration. It is unclear if infant is at risk of becoming hypothermic during PBCC. Objectives: To test if PBCC would maintain core temperature more effectively than immediate cord clamping (ICC). Design: At 0.93 gestation, fetal lambs were surgically exteriorized and instrumented from pregnant ewes under general anesthesia. Prior to the start of the experiment, lambs were thoroughly dried, placed on hot water bottles, and core temperature was continuously monitored using a rectal thermometer. PBCC lambs (n = 21), received intermittent positive pressure ventilation (iPPV) for ≥5 min prior to umbilical cord clamping. In ICC lambs (n = 23), iPPV commenced within 60 s after umbilical cord clamping. iPPV was provided with heated/humidified gas. Lambs were moved under a radiant warmer after umbilical cord clamping. Additional warmth was provided using a plastic overlay, hairdryer, and extra water bottles, as needed. Two-way mixed and repeated measures one-way ANOVAs were used to compare temperature changes between and within a single group, respectively, over time. Results: Basal fetal parameters including core temperature were similar between groups. ICC lambs had a significant reduction in temperature compared to PBCC lambs (p < 0.001), evident by 1 min (p = 0.002). ICC lambs decreased temperature by 0.51°C (± 0.42) and 0.79°C (± 0.55) at 5 and 10 min respectively (p < 0.001). In PBCC lambs, temperature did not significantly change before or after umbilical cord clamping (p = 0.4 and p = 0.3, respectively). Conclusions: PBCC stabilized core temperature at delivery better than ICC in term lambs. Hypothermia may not be a significant risk during PBCC.

15.
J Appl Physiol (1985) ; 129(4): 891-900, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32816641

ABSTRACT

Preterm newborns commonly receive intermittent positive pressure ventilation (iPPV) at birth, but the optimal approach that facilitates uniform lung aeration is unknown, particularly in a partially aerated lung. As both inflation time and exogenous surfactant facilitate uniform lung aeration, we investigated whether they can improve lung aeration and lung mechanics in a partially aerated lung immediately after birth. Preterm rabbit kittens (29 days of gestation, term ~32 days) were delivered by caesarean section and partial lung aeration was created by intubating and mechanically ventilating the right lung. The tube was then withdrawn to ventilate both lungs using inflation times of 0.2 s or 1.0 s, with or without exogenous surfactant (200 mg/kg; Curosurf) and a tidal volume (Vt) of 8 mL/kg. Simultaneous phase contrast X-ray imaging and plethysmography were used to measure lung aeration and mechanics. Kittens ventilated with longer inflation times (1.0 s) reached their target Vt with fewer inflations, required lower inflation pressures (28.5 ± 1.1 vs. 33.5 ± 1.3 cmH2O, P = 0.01) and had higher dynamic lung compliances (0.54 ± 0.3 vs. 0.40 ± 0.3 cmH2O·mL-1·kg-1, P = 0.003). Surfactant increased functional residual capacity (FRC; 31.9 ± 3.2 vs. 18.0 ± 3.9 mL/kg, P = 0.02) and the proportion of the Vt entering the previously unaerated lung but had no effect on dynamic lung compliance. Combining early surfactant treatment with longer inflation times increases FRC levels, improves dynamic lung compliance, reduces inflation pressures and markedly increases the proportion of the lungs being ventilated during iPPV in preterm kittens with a partially aerated lung.NEW & NOTEWORTHY Preterm newborns commonly receive intermittent positive pressure ventilation (iPPV) at birth, but the optimal approach that facilitates uniform lung aeration is unknown, particularly in a partially aerated lung. Using phase contrast X-ray imaging, we showed that combining a long inflation time (1.0 s) with surfactant improved lung mechanics and aeration in the immediate newborn period. The current clinical practice of using short inflation times during iPPV might be suboptimal and a different approach is needed.


Subject(s)
Cesarean Section , Lung , Animals , Animals, Newborn , Cats , Female , Functional Residual Capacity , Pregnancy , Rabbits , Tidal Volume
16.
Front Pediatr ; 8: 262, 2020.
Article in English | MEDLINE | ID: mdl-32582589

ABSTRACT

Objectives: Neonatal resuscitation guidelines recommend administering intravenous (IV) adrenaline if bradycardia persists despite adequate ventilation and chest compressions (CC). Rapid IV access is challenging, but little evidence exists for other routes of administration. We compared IV, endotracheal (ET), and intranasal routes for adrenaline administration during resuscitation of asphyxiated newborn lambs. Study design: Near-term lambs (n = 22) were delivered by caesarean section. Severe asphyxia was induced by clamping the umbilical cord while delaying ET ventilation until blood flow in the carotid artery ceased. Following a 30 s sustained inflation and ventilation for 30 s, we commenced uncoordinated CC at 90/min. We randomized four groups receiving repeated treatment doses (Tds) every 3rd min of (i) IV-Adrenaline (50 µg), (ii) ET-Adrenaline (500 µg), (iii) Nasal-Adrenaline via an atomizer (500 µg), and (iv) IV-saline. If return of spontaneous circulation (ROSC) was not achieved after three Tds by the assigned route, up to two rescue doses (Rds) of IV adrenaline were administered. Main outcome measures were achievement of ROSC and time from start of CC to ROSC, defined as heart rate >100/min, and mean carotid arterial pressure >30 mmHg. Results: In the IV-Adrenaline group, 5/6 lambs achieved ROSC after the first Td, whereas 1 lamb required two Tds before achieving ROSC. In the ET-Adrenaline group, 1/5 lambs required one Td, 1 lamb required three Tds, 2 lambs required 2 Rds, and 1 did not achieve ROSC. In the Nasal-Adrenaline group, 1/6 lambs required one Td, 2 required two Tds, whereas 3 lambs required either one (2 lambs) or two (1 lamb) Rds of adrenaline to achieve ROSC. In the IV-saline group, no lambs achieved ROSC until adrenaline Rds; 4/5 lambs required one Rd and 1 lamb required two Rds. Time to ROSC was shorter using IV-Adrenaline (2.4 ± 0.4 min) compared with ET-Adrenaline (10.3 ± 2.4 min), Nasal-Adrenaline (9.2 ± 2.2 min), and IV-saline (11.2 ± 1.2 min). Conclusion: IV adrenaline had superior efficacy compared with nasal or ET administration. Nasal administration had a similar effect as ET administration and is an easier route for early application. Nasal high-dose adrenaline administration for neonatal resuscitation merits further investigation.

17.
Arch Dis Child Fetal Neonatal Ed ; 105(1): 26-32, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31092674

ABSTRACT

INTRODUCTION: During delayed umbilical cord clamping, the factors underpinning placental transfusion remain unknown. We hypothesised that reductions in thoracic pressure during inspiration would enhance placental transfusion in spontaneously breathing preterm lambs. OBJECTIVE: Investigate the effect of spontaneous breathing on umbilical venous flow and body weight in preterm lambs. METHODS: Pregnant sheep were instrumented at 132-133 days gestational age to measure fetal common umbilical venous, pulmonary and cerebral blood flows as well as arterial and intrapleural (IP) pressures. At delivery, doxapram and caffeine were administered to promote breathing. Lamb body weights were measured continuously and breathing was assessed by IP pressure changes. RESULTS: In 6 lambs, 491 out of 1117 breaths were analysed for change in body weight. Weight increased in 46.6% and decreased in 47.5% of breaths. An overall mean increase of 0.02±2.5 g per breath was calculated, and no net placental transfusion was observed prior to cord clamping (median difference in body weight 52.3 [-54.9-166.1] g, p=0.418). Umbilical venous (UV) flow transiently decreased with each inspiration, and in some cases ceased, before UV flow normalised during expiration. The reduction in UV flow was positively correlated with the standardised reduction in (IP) pressure, increasing by 109 mL/min for every SD reduction in IP pressure. Thus, the reduction in UV flow was closely related to inspiratory depth. CONCLUSIONS: Spontaneous breathing had no net effect on body weight in preterm lambs at birth. UV blood flow decreased as inspiratory effort increased, possibly due to constriction of the inferior vena cava caused by diaphragmatic contraction, as previously observed in human fetuses.


Subject(s)
Placental Circulation/physiology , Respiration , Umbilical Cord , Umbilical Veins/physiology , Animals , Animals, Newborn , Blood Flow Velocity/physiology , Body Weight , Constriction , Disease Models, Animal , Female , Pregnancy , Premature Birth , Sheep , Time Factors
18.
Arch Dis Child Fetal Neonatal Ed ; 105(1): 18-25, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31123056

ABSTRACT

OBJECTIVE: Lung hypoplasia associated with congenital diaphragmatic hernia (CDH) results in respiratory insufficiency and pulmonary hypertension after birth. We have investigated whether aerating the lung before removing placental support (physiologically based cord clamping (PBCC)), improves the cardiopulmonary transition in lambs with a CDH. METHODS: At ≈138 days of gestational age, 17 lambs with surgically induced left-sided diaphragmatic hernia (≈d80) were delivered via caesarean section. The umbilical cord was clamped either immediately prior to ventilation onset (immediate cord clamping (ICC); n=6) or after achieving a target tidal volume of 4 mL/kg, with a maximum delay of 10 min (PBCC; n=11). Lambs were ventilated for 120 min and physiological changes recorded. RESULTS: Pulmonary blood flow (PBF) increased following ventilation onset in both groups, but was 19-fold greater in PBCC compared with ICC lambs at cord clamping (19±6.3 vs 1.0±0.5 mL/min/kg, p<0.001). Cerebral tissue oxygenation was higher in PBCC than ICC lambs during the first 10 min after cord clamping (59%±4% vs 30%±5%, p<0.001). PBF was threefold higher (23±4 vs 8±2 mL/min/kg, p=0.01) and pulmonary vascular resistance (PVR) was threefold lower (0.6±0.1 vs 2.2±0.6 mm Hg/(mL/min), p<0.001) in PBCC lambs compared with ICC lambs at 120 min after ventilation onset. CONCLUSIONS: Compared with ICC, PBCC prevented the severe asphyxia immediately after birth and resulted in a higher PBF due to a lower PVR, which persisted for at least 120 min after birth in CDH lambs.


Subject(s)
Cardiac Output , Constriction , Hernias, Diaphragmatic, Congenital , Positive-Pressure Respiration , Pulmonary Circulation , Umbilical Cord , Animals , Animals, Newborn , Asphyxia Neonatorum/prevention & control , Brain/metabolism , Disease Models, Animal , Oxygen/metabolism , Sheep , Tidal Volume , Vascular Resistance
19.
Front Pediatr ; 7: 427, 2019.
Article in English | MEDLINE | ID: mdl-31696099

ABSTRACT

Background: Spontaneous breathing is essential for successful non-invasive respiratory support delivered by a facemask at birth. As hypoxia is a potent inhibitor of spontaneous breathing, initiating respiratory support with a high fraction of inspired O2 may reduce the risk of hypoxia and increase respiratory effort at birth. Methods: Preterm rabbit kittens (29 days gestation, term ~32 days) were delivered and randomized to receive continuous positive airway pressure with either 21% (n = 12) or 100% O2 (n = 8) via a facemask. If apnea occurred, intermittent positive pressure ventilation (iPPV) was applied with either 21% or 100% O2 in kittens who started in 21% O2, and remained at 100% O2 for kittens who started the experiment in 100% O2. Respiratory rate (breaths per minute, bpm) and variability in inter-breath interval (%) were measured from esophageal pressure recordings and functional residual capacity (FRC) was measured from synchrotron phase-contrast X-ray images. Results: Initially, kittens receiving 21% O2 had a significantly lower respiratory rate and higher variability in inter-breath interval, indicating a less stable breathing pattern than kittens starting in 100% O2 [median (IQR) respiratory rate: 16 (4-28) vs. 38 (29-46) bpm, p = 0.001; variability in inter-breath interval: 33.3% (17.2-50.1%) vs. 27.5% (18.6-36.3%), p = 0.009]. Apnea that required iPPV, was more frequently observed in kittens in whom resuscitation was started with 21% compared to 100% O2 (11/12 vs. 1/8, p = 0.001). After recovering from apnea, respiratory rate was significantly lower and variability in inter-breath interval was significantly higher in kittens who received iPPV with 21% compared to 100% O2. FRC was not different between study groups at both timepoints. Conclusion: Initiating resuscitation with 100% O2 resulted in increased respiratory activity and stability, thereby reducing the risk of apnea and need for iPPV after birth. Further studies in human preterm infants are mandatory to confirm the benefit of this approach in terms of oxygenation. In addition, the ability to avoid hyperoxia after initiation of resuscitation with 100% oxygen, using a titration protocol based on oxygen saturation, needs to be clarified.

20.
J Appl Physiol (1985) ; 127(2): 568-578, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31194603

ABSTRACT

Newborns with lung hypoplasia (LH) commonly have limited respiratory function and often require ventilatory assistance after birth. We aimed to characterize the cardiorespiratory transition and respiratory function in newborn lambs with LH. LH was induced by draining fetal lung liquid in utero [110-133 days (d), term = 147d, n = 6]. At ~133d gestation, LH and Control lambs (n = 6) were instrumented and ventilated for 3 h to monitor blood-gas status, oxygenation, ventilator requirements, and hemodynamics during the transition from fetal to newborn life. Lambs with LH had significantly reduced relative wet and dry lung weights indicating hypoplastic lungs compared with Control lambs. LH lambs experienced persistent hypercapnia and acidosis during the ventilation period, had lower lung compliance, and had higher alveolar-arterial differences in oxygen and oxygenation index compared with Control lambs. As a result, LH lambs required greater respiratory support and more supplemental oxygen. Following delivery, LH lambs experienced periods of significantly lower pulmonary artery blood flow and higher carotid artery blood flow in association with the lower oxygenation levels. The detrimental effects of LH can be attributed to a reduction in lung size and poorer gas exchange capabilities. This study has provided greater understanding of the effect of LH itself on the physiology underpinning the transition from fetal to newborn life. Advances in this area is the key to identifying improved or novel management strategies for babies with LH starting in the delivery room, to favorably alter the fetal-to-newborn transition toward improved outcomes and reduced lifelong morbidity.NEW & NOTEWORTHY Current clinical management of newborns with lung hypoplasia (LH) is largely based on expert opinion rather than scientific evidence. We have generated physiological evidence for detrimental effects of LH on hemodynamics and respiratory function in newborn lambs, which mimics the morbidity observed in LH newborns clinically. The unfavorable consequences of LH can be attributed to a reduction in lung size and poorer gas exchange capabilities.


Subject(s)
Lung/abnormalities , Parturition/physiology , Pulmonary Circulation , Respiration , Respiratory System Abnormalities/physiopathology , Animals , Animals, Newborn , Heart/physiopathology , Lung/physiopathology , Pulmonary Gas Exchange , Respiration, Artificial , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...