Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(9): 091101, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182455

ABSTRACT

Laser cooled atoms have proven transformative for precision metrology, playing a pivotal role in state-of-the-art clocks and interferometers and having the potential to provide a step-change in our modern technological capabilities. To successfully explore their full potential, laser cooling platforms must be translated from the laboratory environment and into portable, compact quantum sensors for deployment in practical applications. This transition requires the amalgamation of a wide range of components and expertise if an unambiguously chip-scale cold atom sensor is to be realized. We present recent developments in cold-atom sensor miniaturization, focusing on key components that enable laser cooling on the chip-scale. The design, fabrication, and impact of the components on sensor scalability and performance will be discussed with an outlook to the next generation of chip-scale cold atom devices.

2.
Opt Express ; 27(26): 38359-38366, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878604

ABSTRACT

Clocks based on cold atoms offer unbeatable accuracy and long-term stability, but their use in portable quantum technologies is hampered by a large physical footprint. Here, we use the compact optical layout of a grating magneto-optical trap (gMOT) for a precise frequency reference. The gMOT collects 107 87Rb atoms, which are subsequently cooled to 20 µK in optical molasses. We optically probe the microwave atomic ground-state splitting using lin⊥lin polarised coherent population trapping and a Raman-Ramsey sequence. With ballistic drop distances of only 0.5 mm, the measured short-term fractional frequency stability is 2×10-11/τ.

3.
Opt Lett ; 44(12): 3002-3005, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199366

ABSTRACT

We demonstrate a novel way to form and deplete a vapor-cell magneto-optic trap (MOT) using a reversible, solid-state alkali-metal source via an applied polarized voltage. Using ∼100 mW of electrical power, a trapped-atom number of 5×106 has been achieved, starting from near zero and the timescales of the MOT formation and depletion of ∼1 s. This fast, reversible, and low-power alkali-atom source is desirable in both tabletop and portable cold-atom systems. The core technology of this device should translate readily to other alkali and alkaline-earth elements that could find a wide range of uses in cold-atom systems and instruments.

4.
Appl Phys B ; 122(6): 172, 2016.
Article in English | MEDLINE | ID: mdl-32355419

ABSTRACT

It has recently been shown that optical reflection gratings fabricated directly into an atom chip provide a simple and effective way to trap and cool substantial clouds of atoms (Nshii et al. in Nat Nanotechnol 8:321-324, 2013; McGilligan et al. in Opt Express 23(7):8948-8959, 2015). In this article, we describe how the gratings are designed and microfabricated and we characterise their optical properties, which determine their effectiveness as a cold atom source. We use simple scalar diffraction theory to understand how the morphology of the gratings determines the power in the diffracted beams.

5.
Opt Express ; 23(7): 8948-59, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968732

ABSTRACT

We have used diffraction gratings to simplify the fabrication, and dramatically increase the atomic collection efficiency, of magneto-optical traps using micro-fabricated optics. The atom number enhancement was mainly due to the increased beam capture volume, afforded by the large area (4cm(2)) shallow etch (~ 200nm) binary grating chips. Here we provide a detailed theoretical and experimental investigation of the on-chip magneto-optical trap temperature and density in four different chip geometries using (87)Rb, whilst studying effects due to MOT radiation pressure imbalance. With optimal initial MOTs on two of the chips we obtain both large atom number (2×10(7)) and sub-Doppler temperatures (50 µK) after optical molasses.

SELECTION OF CITATIONS
SEARCH DETAIL
...