Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G171-G184, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34159811

ABSTRACT

Vitamin D deficiency is an environmental factor involved in the pathogenesis of inflammatory bowel disease (IBD); however, the mechanisms surrounding its role remain unclear. Previous studies conducted in an intestinal epithelial-specific vitamin D receptor (VDR) knockout model suggest that a lack of vitamin D signaling causes a reduction in intestinal autophagy. A potential link between vitamin D deficiency and dysregulated autophagy is microRNA (miR)-142-3p, which suppresses autophagy. In this study, we found that wild-type C57BL/6 mice fed a vitamin D-deficient diet for 5 wk had increased miR-142-3p expression in ileal tissues compared with mice that were fed a matched control diet. Interestingly, there was no difference in expression of key autophagy markers ATG16L1 and LC3II in the ileum whole tissue. However, Paneth cells of vitamin D-deficient mice were morphologically abnormal and had an accumulation of the autophagy adaptor protein p62, which was not present in the total crypt epithelium. These findings suggest that Paneth cells exhibit early markers of autophagy dysregulation within the intestinal epithelium in response to vitamin D deficiency and enhanced miR-142-3p expression. Finally, we demonstrated that treatment-naïve IBD patients with low levels of vitamin D have an increase in miR-142-3p expression in colonic tissues procured from "involved" areas of the disease. Taken together, our findings demonstrate that insufficient vitamin D levels alter expression of autophagy-regulating miR-142-3p in intestinal tissues of mice and patients with IBD, providing insight into the mechanisms by which vitamin D deficiency modulates IBD pathogenesis.NEW & NOTEWORTHY Vitamin D deficiency has a role in IBD pathogenesis, and although the mechanisms surrounding its role remain unclear, it has been suggested that autophagy dysregulation is involved. Here, we show increased ileal expression of autophagy-suppressing miR-142-3p in mice that were fed a vitamin D-deficient diet and in "involved" colonic biopsies from pediatric IBD patients with low vitamin D. miR-142-3p serves as a potential mechanism mediating vitamin D deficiency and reduced autophagy.


Subject(s)
Ileum/metabolism , Inflammatory Bowel Diseases/metabolism , MicroRNAs/genetics , Vitamin D Deficiency/metabolism , Vitamin D/metabolism , Adolescent , Animals , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cells, Cultured , Child , HCT116 Cells , HeLa Cells , Humans , Ileum/pathology , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Paneth Cells/metabolism , Paneth Cells/pathology , Vitamin D Deficiency/complications
2.
Nutrients ; 11(8)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31405019

ABSTRACT

Dietary pulses, including lentils, are protein-rich plant foods that are enriched in intestinal health-promoting bioactives, such as non-digestible carbohydrates and phenolic compounds. The aim of this study was to investigate the effect of diets supplemented with cooked red lentils on the colonic microenvironment (microbiota composition and activity and epithelial barrier integrity and function). C57Bl/6 male mice were fed one of five diets: a control basal diet (BD), a BD-supplemented diet with 5, 10 or 20% cooked red lentils (by weight), or a BD-supplemented diet with 0.7% pectin (equivalent soluble fiber level as found in the 20% lentil diet). Red lentil supplementation resulted in increased: (1) fecal microbiota α-diversity; (2) abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Prevotella, Roseburia and Dorea spp.); (3) concentrations of fecal SCFAs; (4) mRNA expression of SCFA receptors (G-protein-coupled receptors (GPR 41 and 43) and tight/adherens junction proteins (Zona Occulden-1 (ZO-1), Claudin-2, E-cadherin). Overall, 20% lentil had the greatest impact on colon health outcomes, which were in part explained by a change in the soluble and insoluble fiber profile of the diet. These results support recent public health recommendations to increase consumption of plant-based protein foods for improved health, in particular intestinal health.


Subject(s)
Bacteria/metabolism , Colon/microbiology , Cooking , Dietary Fiber/metabolism , Gastrointestinal Microbiome , Lens Plant/metabolism , Seeds/metabolism , Animals , Bacteria/genetics , Cadherins/genetics , Cadherins/metabolism , Colon/metabolism , Diet , Dietary Fiber/administration & dosage , Fatty Acids/metabolism , Feces/microbiology , Hot Temperature , Male , Mice, Inbred C57BL , Mucins/genetics , Mucins/metabolism , Nutritive Value , Permeability , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
3.
Appl Physiol Nutr Metab ; 43(9): 893-901, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29522694

ABSTRACT

The potential for a chickpea-supplemented diet (rich in fermentable nondigestible carbohydrates and phenolic compounds) to modify the colonic microenvironment and attenuate the severity of acute colonic inflammation was investigated. C57Bl/6 male mice were fed a control basal diet or basal diet supplemented with 20% cooked chickpea flour for 3 weeks prior to acute colitis onset induced by 7-day exposure to dextran sodium sulfate (DSS; 2% w/v in drinking water) and colon and serum levels of inflammatory mediators were assessed. Despite an equal degree of DSS-induced epithelial barrier histological damage and clinical symptoms between dietary groups, biomarkers of the ensuing inflammatory response were attenuated by chickpea pre-feeding, including reduced colon tissue activation of nuclear factor kappa B and inflammatory cytokine production (tumor necrosis factor alpha and interleukin (IL)-18). Additionally, colon protein expression of anti-inflammatory (IL-10) and epithelial repair (IL-22 and IL-27) cytokines were increased by chickpea pre-feeding. Furthermore, during acute colitis, chickpea pre-feeding increased markers of enhanced colonic function, including Relmß and IgA gene expression. Collectively, chickpea pre-feeding modulated the baseline function of the colonic microenvironment, whereby upon induction of acute colitis, the severity of the inflammatory response was attenuated.


Subject(s)
Cicer , Colitis/diet therapy , Inflammation/diet therapy , Animals , Biomarkers/metabolism , Colitis/chemically induced , Dextran Sulfate , Diet , Disease Models, Animal , Flour , Inflammation/chemically induced , Interleukin-18/metabolism , Interleukins/metabolism , Intestinal Mucosa/metabolism , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...