Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 457, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709345

ABSTRACT

Injectable biomimetic hydrogels have great potential for use in regenerative medicine as cellular delivery vectors. However, they can suffer from issues relating to hypoxia, including poor cell survival, differentiation, and functional integration owing to the lack of an established vascular network. Here we engineer a hybrid myoglobin:peptide hydrogel that can concomitantly deliver stem cells and oxygen to the brain to support engraftment until vascularisation can occur naturally. We show that this hybrid hydrogel can modulate cell fate specification within progenitor cell grafts, resulting in a significant increase in neuronal differentiation. We find that the addition of myoglobin to the hydrogel results in more extensive innervation within the host tissue from the grafted cells, which is essential for neuronal replacement strategies to ensure functional synaptic connectivity. This approach could result in greater functional integration of stem cell-derived grafts for the treatment of neural injuries and diseases affecting the central and peripheral nervous systems.


Subject(s)
Hydrogels , Neural Stem Cells , Hydrogels/metabolism , Oxygen/metabolism , Myoglobin/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Cell Differentiation
2.
Biointerphases ; 3(2): FA125, 2008 Jun.
Article in English | MEDLINE | ID: mdl-20408662

ABSTRACT

Surface-layer (S-layer) supported lipid membranes on solid substrates are interfacial architectures mimicking the supramolecular principle of cell envelopes which have been optimized for billions of years of evolution in most extreme habitats. The authors implement this biological construction principle in a variety of layered supramolecular architectures consisting of a stabilizing protein monolayer and a functional phospholipid bilayer for the design and development of new types of solid-supported biomimetic membranes with a considerably extended stability and lifetime-compared to existing platforms-as required for novel types of bioanalytical sensors. First, Langmuir monolayers of lipids at the water/air interface are used as test beds for the characterization of different types of molecules which all interact with the lipid layers in various ways and, hence, are relevant for the control of the structure, stability, and function of supported membranes. As an example, the interaction of S-layer proteins from the bulk phase with a monolayer of a phospholipid synthetically conjugated with a secondary cell wall polymer (SCWP) was studied as a function of the packing density of the lipids in the monolayer. Furthermore, SCWPs were used as a new molecular construction element. The exploitation of a specific lectin-type bond between the N-terminal part of selected S-layer proteins and a variety of glycans allowed for the buildup of supramolecular assemblies and thus functional membranes with a further increased stability. Next, S-layer proteins were self-assembled and characterized by the surface-sensitive techniques, surface plasmon resonance spectroscopy and quartz crystal microbalance with dissipation monitoring. The substrates were either planar gold or silicon dioxide sensor surfaces. The assembly of S-layer proteins from solution to solid substrates could nicely be followed in-situ and in real time. As a next step toward S-layer supported bilayer membranes, the authors characterized various architectures based on lipid molecules that were modified by a flexible spacer separating the amphiphiles from the anchor group that allows for a covalent coupling of the lipid to a solid support, e.g., using thiols for Au substrates. Impedance spectroscopy confirmed the excellent charge barrier properties of these constructs with a high electrical resistance. Structural details of various types of these tethered bimolecular lipid membranes were studied by using neutron reflectometry. Finally, first attempts are reported to develop a code based on a SPICE network analysis program which is suitable for the quantitative analysis of the transient and steady-state currents passing through these membranes upon the application of a potential gradient.

3.
Phys Rev Lett ; 97(4): 046102, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-16907594

ABSTRACT

Anionic dimyristoylphosphatidic acid monolayers spread on LaCl3 solutions reveal strong cation adsorption and a sharp transition to surface overcharging at unexpectedly low bulk salt concentrations. We determine the surface accumulation of La3+ with anomalous x-ray reflectivity and find that La3+ compensates the lipid surface charge by forming a Stern layer with approximately 1 La3+ ion per 3 lipids below a critical bulk concentration, ct approximately 500 nM. Above ct, the surface concentration of La3+ increases to a saturation level with approximately 1 La3+ per lipid, thus implying that the total electric charge of the La3+ exceeds the surface charge. This overcharge is observed at approximately 4 orders of magnitude lower concentration than predicted in ion-ion correlation theories. We suggest that transverse electrostatic correlations between mobile ions and surface charges (interfacial Bjerrum pairing) may contribute to the charge inversion.

SELECTION OF CITATIONS
SEARCH DETAIL