Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 2024 06 24.
Article in English | MEDLINE | ID: mdl-38923603

ABSTRACT

We evaluated the impacts of COVID-19 on multi-organ and metabolic function in patients following severe hospitalised infection compared to controls. Patients (n = 21) without previous diabetes, cardiovascular or cerebrovascular disease were recruited 5-7 months post-discharge alongside controls (n = 10) with similar age, sex and body mass. Perceived fatigue was estimated (Fatigue Severity Scale) and the following were conducted: oral glucose tolerance (OGTT) alongside whole-body fuel oxidation, validated magnetic resonance imaging and spectroscopy during resting and supine controlled exercise, dual-energy X-ray absorptiometry, short physical performance battery (SPPB), intra-muscular electromyography, quadriceps strength and fatigability, and daily step-count. There was a greater insulin response (incremental area under the curve, median (inter-quartile range)) during the OGTT in patients [18,289 (12,497-27,448) mIU/min/L] versus controls [8655 (7948-11,040) mIU/min/L], P < 0.001. Blood glucose response and fasting and post-prandial fuel oxidation rates were not different. This greater insulin resistance was not explained by differences in systemic inflammation or whole-body/regional adiposity, but step-count (P = 0.07) and SPPB scores (P = 0.004) were lower in patients. Liver volume was 28% greater in patients than controls, and fat fraction adjusted liver T1, a measure of inflammation, was raised in patients. Patients displayed greater perceived fatigue scores, though leg muscle volume, strength, force-loss, motor unit properties and post-exercise muscle phosphocreatine resynthesis were comparable. Further, cardiac and cerebral architecture and function (at rest and on exercise) were not different. In this cross-sectional study, individuals without known previous morbidity who survived severe COVID-19 exhibited greater insulin resistance, pointing to a need for physical function intervention in recovery.

2.
Aliment Pharmacol Ther ; 54(4): 368-387, 2021 08.
Article in English | MEDLINE | ID: mdl-34228817

ABSTRACT

BACKGROUND: Fatigue is the inability to achieve or maintain an expected work output resulting from central or peripheral mechanisms. The prevalence of inflammatory bowel disease (IBD) fatigue can reach 86% in active disease, persisting in 50%-52% of patients with mild to inactive disease. Fatigue is the commonest reason for work absence in IBD, and patients often report fatigue burden to be greater than that of primary disease symptoms. Relatively few evidence-based treatment options exist, and the aetiology is poorly understood. AIM: To review the available data and suggest a possible aetiology of IBD fatigue and to consider the efficacy of existing management strategies and highlight potential future interventions. METHODS: We reviewed fatigue-related literature in IBD using PubMed database. RESULTS: Disease related factors such as inflammation and pharmacological treatments negatively impact skeletal muscle and brain physiology, likely contributing to fatigue symptoms. Secondary factors such as malnutrition, anaemia, sleep disturbance and psychological comorbidity are potential determinants. Immune profile, faecal microbiota composition and physical fitness differ significantly between fatigued and non-fatigued patients, suggesting these may be aetiological factors. Solution-focused therapy, high-dosage thiamine supplementation and biological therapy may reduce fatigue perception in IBD. The effect of physical activity interventions is inconclusive. CONCLUSIONS: A multimodal approach is likely required to treat IBD fatigue. Established reversible factors like anaemia, micronutrient deficiencies and active disease should initially be resolved. Psychosocial intervention shows potential efficacy in reducing fatigue perception in quiescent disease. Restoring physical deconditioning by exercise training intervention may further improve fatigue burden.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Exercise , Fatigue/epidemiology , Fatigue/etiology , Fatigue/therapy , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/therapy , Physical Fitness , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...