Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
3.
Cancer Cell ; 42(3): 429-443.e4, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38366589

ABSTRACT

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine (NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The NE tumors with low tumor-associated macrophage (TAM) but high T-effector signals demonstrate longer overall survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector signal. Our study offers a clinically relevant approach to discriminate SCLC patients likely benefitting most from immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/genetics , Immune Checkpoint Inhibitors/therapeutic use , Small Cell Lung Carcinoma/genetics , Carboplatin/therapeutic use , Etoposide/therapeutic use , Immunotherapy
4.
Nature ; 627(8004): 646-655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418879

ABSTRACT

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents , B7-H1 Antigen , Myeloid Cells , Neoplasms , Receptors, Immunologic , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Drug Therapy, Combination , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/therapeutic use , Macrophage Activation , Myeloid Cells/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Receptors, IgG/immunology , Receptors, Immunologic/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
5.
J Pathol ; 254(4): 405-417, 2021 07.
Article in English | MEDLINE | ID: mdl-33723864

ABSTRACT

Over the past decade, invention and adoption of novel multiplexing technologies for tissues have made increasing impacts in basic and translational research and, to a lesser degree, clinical medicine. Platforms capable of highly multiplexed immunohistochemistry or in situ RNA measurements promise evaluation of protein or RNA targets at levels of plex and sensitivity logs above traditional methods - all with preservation of spatial context. These methods promise objective biomarker quantification, markedly increased sensitivity, and single-cell resolution. Increasingly, development of novel technologies is enabling multi-omic interrogations with spatial correlation of RNA and protein expression profiles in the same sample. Such sophisticated methods will provide unprecedented insights into tissue biology, biomarker science, and, ultimately, patient health. However, this sophistication comes at significant cost, requiring extensive time, practical knowledge, and resources to implement. This review will describe the technical features, advantages, and limitations of currently available multiplexed immunohistochemistry and spatial transcriptomic platforms. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Immunohistochemistry/methods , In Situ Hybridization/methods , Animals , Humans
6.
Nat Biotechnol ; 37(12): 1458-1465, 2019 12.
Article in English | MEDLINE | ID: mdl-31792411

ABSTRACT

Identifying the causes of human diseases requires deconvolution of abnormal molecular phenotypes spanning DNA accessibility, gene expression and protein abundance1-3. We present a single-cell framework that integrates highly multiplexed protein quantification, transcriptome profiling and analysis of chromatin accessibility. Using this approach, we establish a normal epigenetic baseline for healthy blood development, which we then use to deconvolve aberrant molecular features within blood from patients with mixed-phenotype acute leukemia4,5. Despite widespread epigenetic heterogeneity within the patient cohort, we observe common malignant signatures across patients as well as patient-specific regulatory features that are shared across phenotypic compartments of individual patients. Integrative analysis of transcriptomic and chromatin-accessibility maps identified 91,601 putative peak-to-gene linkages and transcription factors that regulate leukemia-specific genes, such as RUNX1-linked regulatory elements proximal to the marker gene CD69. These results demonstrate how integrative, multiomic analysis of single cells within the framework of normal development can reveal both distinct and shared molecular mechanisms of disease from patient samples.


Subject(s)
Chromatin/genetics , Leukemia, Biphenotypic, Acute/genetics , Single-Cell Analysis/methods , Transcriptome/genetics , Bone Marrow Cells/cytology , Chromatin/chemistry , Cluster Analysis , Core Binding Factor Alpha 2 Subunit/genetics , Epigenesis, Genetic/genetics , Epigenomics/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Regulatory Sequences, Nucleic Acid/genetics
7.
Am J Surg Pathol ; 42(7): 885-890, 2018 07.
Article in English | MEDLINE | ID: mdl-29649018

ABSTRACT

Langerhans cell histiocytosis is a proliferative disorder of neoplastic Langerhans cells with activating mutations in the Erk signaling pathway. TP53 and U2AF1 mutations have been implicated in other myelomonocytic malignancies and we hypothesized that mutations in these genes may cosegregate in LCH patients according to BRAF mutation status. Towards this end, we collected cases with a pathologic diagnosis of Langerhans cell histiocytosis from Stanford University Hospital. We analyzed the status of known pathogenic alleles in BRAF, ARAF, TP53, U2AF1, and MAP2K1 on formalin-fixed, paraffin-embedded tissue by direct sequencing. A total of 41 cases (71%) had a BRAFV600E allele detected by sequencing. MAP2K1 mutations were also detected in 5 cases: 3 of 17 (18%) cases with wild-type BRAF and 2 of 41 (5%) cases with BRAFV600E mutations (P=0.14). No cases contained the previously reported ARAF mutation, Q347_A348del. All 10 cases with TP53 mutations contained mutant BRAFV600E allele (P=0.021). Of the 11 cases with U2AF1 mutated, 9 of 41 cases co-occurred with BRAFV600E mutations (P=0.31) and 2 of 17 with wild-type BRAF. Interestingly, we do not find that somatic activating MAP2K1 mutations are mutually exclusive with BRAFV600E mutations as has been reported previously. Instead, our data suggests that MAP2K1 mutations may be present along with BRAF either at diagnosis or may be acquired during disease progression. Furthermore, we demonstrated that likely deleterious TP53 mutations correlate with BRAF mutational status and may play a role in the underlying pathogenesis.


Subject(s)
MAP Kinase Kinase 1/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Splicing Factor U2AF/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , California , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/enzymology , Histiocytosis, Langerhans-Cell/pathology , Humans , Immunohistochemistry , Infant , Male , Middle Aged , Mutation Rate , Phenotype , Proto-Oncogene Proteins A-raf/genetics , Young Adult
8.
Nat Med ; 19(10): 1331-1337, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24037094

ABSTRACT

Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in nondiabetic C57BL/6 and diabetic db/db mice, potentiating hepatic insulin signaling with lower gluconeogenic gene expression, higher glycogen storage and suppressed hepatic glucose production. VEGF inhibition induced hepatic hypoxia through sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia-inducible factor-2α (Hif-2α, encoded by Epas1) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling through direct and indirect induction of insulin receptor substrate-2 (Irs2), an essential insulin receptor adaptor protein. Further, liver Irs2 was both necessary and sufficient to mediate Hif-2α and Vegf inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between Hif-2α-mediated hypoxic signaling and hepatic insulin action through Irs2 induction, which can be co-opted by Vegf inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for Hif-1α, which promotes glycolysis, and Hif-2α, which suppresses gluconeogenesis, and suggest new treatment approaches for type 2 diabetes mellitus.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Insulin Receptor Substrate Proteins/physiology , Insulin/metabolism , Liver/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Diabetes Mellitus, Type 2/therapy , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction
9.
Nat Med ; 19(10): 1325-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24037093

ABSTRACT

Signaling initiated by hypoxia and insulin powerfully alters cellular metabolism. The protein stability of hypoxia-inducible factor-1 alpha (Hif-1α) and Hif-2α is regulated by three prolyl hydroxylase domain-containing protein isoforms (Phd1, Phd2 and Phd3). Insulin receptor substrate-2 (Irs2) is a critical mediator of the anabolic effects of insulin, and its decreased expression contributes to the pathophysiology of insulin resistance and diabetes. Although Hif regulates many metabolic pathways, it is unknown whether the Phd proteins regulate glucose and lipid metabolism in the liver. Here, we show that acute deletion of hepatic Phd3, also known as Egln3, improves insulin sensitivity and ameliorates diabetes by specifically stabilizing Hif-2α, which then increases Irs2 transcription and insulin-stimulated Akt activation. Hif-2α and Irs2 are both necessary for the improved insulin sensitivity, as knockdown of either molecule abrogates the beneficial effects of Phd3 knockout on glucose tolerance and insulin-stimulated Akt phosphorylation. Augmenting levels of Hif-2α through various combinations of Phd gene knockouts did not further improve hepatic metabolism and only added toxicity. Thus, isoform-specific inhibition of Phd3 could be exploited to treat type 2 diabetes without the toxicity that could occur with chronic inhibition of multiple Phd isoforms.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia/metabolism , Insulin/metabolism , Lipid Metabolism , Liver/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Mice , Mice, Knockout
11.
Nature ; 456(7223): 819-23, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-18849970

ABSTRACT

DNA double-strand breaks are generated by genotoxic agents and by cellular endonucleases as intermediates of several important physiological processes. The cellular response to genotoxic DNA breaks includes the activation of transcriptional programs known primarily to regulate cell-cycle checkpoints and cell survival. DNA double-strand breaks are generated in all developing lymphocytes during the assembly of antigen receptor genes, a process that is essential for normal lymphocyte development. Here we show that in murine lymphocytes these physiological DNA breaks activate a broad transcriptional program. This program transcends the canonical DNA double-strand break response and includes many genes that regulate diverse cellular processes important for lymphocyte development. Moreover, the expression of several of these genes is regulated similarly in response to genotoxic DNA damage. Thus, physiological DNA double-strand breaks provide cues that can regulate cell-type-specific processes not directly involved in maintaining the integrity of the genome, and genotoxic DNA breaks could disrupt normal cellular functions by corrupting these processes.


Subject(s)
B-Lymphocytes/metabolism , DNA Breaks, Double-Stranded , Gene Expression Regulation, Developmental/genetics , Animals , Ataxia Telangiectasia Mutated Proteins , B-Lymphocytes/drug effects , Cell Cycle Proteins/drug effects , Cell Line , DNA-Binding Proteins/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Mice, SCID , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/drug effects , Tumor Suppressor Proteins/drug effects
12.
Nature ; 450(7170): 731-5, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046413

ABSTRACT

At critical times in development, cells are able to convert graded signals into discrete developmental outcomes; however, the mechanisms involved are poorly understood. During thymocyte development, cell fate is determined by signals originating from the alphabeta T-cell receptor. Low-affinity/avidity interactions between the T-cell receptor and peptide-MHC complexes direct differentiation to the single-positive stage (positive selection), whereas high-affinity/avidity interactions induce death by apoptosis (negative selection). Here we show that mice deficient in both calcineurin and nuclear factor of activated T cells (NFAT)c2/c3 lack a population of preselection thymocytes with enhanced ability to activate the mitogen-activated protein kinase (Raf-MEK-ERK) pathway, and fail to undergo positive selection. This defect can be partially rescued with constitutively active Raf, indicating that calcineurin controls MAPK signalling. Analysis of mice deficient in both Bim (which is required for negative selection) and calcineurin revealed that calcineurin-induced ERK (extracellular signal-regulated kinase) sensitization is required for differentiation in response to 'weak' positive selecting signals but not in response to 'strong' negative selecting signals (which normally induce apoptosis). These results indicate that early calcineurin/NFAT signalling produces a developmental period of ERK hypersensitivity, allowing very weak signals to induce positive selection. This mechanism might be generally useful in the discrimination of graded signals that induce different cell fates.


Subject(s)
Calcineurin/metabolism , Cell Differentiation , MAP Kinase Signaling System , Thymus Gland/cytology , Thymus Gland/metabolism , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Calcineurin/deficiency , Calcineurin/genetics , Cells, Cultured , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Ligands , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymus Gland/enzymology , raf Kinases/metabolism
13.
Infect Immun ; 73(6): 3794-8, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15908415

ABSTRACT

In an analysis of Helicobacter pylori genomic DNA by macroarray methodology, genomic DNA from a panel of cag pathogenicity island (PAI)-negative H. pylori clinical isolates failed to hybridize with 27 genes located outside the cag PAI in a cag PAI-positive reference strain. PCR analyses confirmed that HP0217 (encoding a lipopolysaccharide biosynthetic protein) and HP1079 (encoding a protein of unknown function) were present significantly more frequently in cagA-positive strains than in cagA-negative strains. A low G+C content of these two genes suggests they were acquired by horizontal transfer events.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Genomic Islands , Helicobacter pylori/genetics , Biomarkers , Gene Transfer, Horizontal , Helicobacter pylori/pathogenicity , Polymerase Chain Reaction
14.
J Biol Chem ; 278(33): 30936-44, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12771151

ABSTRACT

A panel of variants with alanine substitutions in the small loop of anthrax toxin protective antigen domain 4 was created to determine individual amino acid residues critical for interactions with the cellular receptor and with a neutralizing monoclonal antibody, 14B7. Substituted protective antigen proteins were analyzed by cellular cytotoxicity assays, and their interactions with antibody were measured by plasmon surface resonance and analytical ultracentrifugation. Residue Asp683 was the most critical for cell binding and toxicity, causing an approximately 1000-fold reduction in toxicity, but was not a large factor for interactions with 14B7. Substitutions in residues Tyr681, Asn682, and Pro686 also reduced toxicity significantly, by 10-100-fold. Of these, only Asn682 and Pro686 were also critical for interactions with 14B7. However, residues Lys684, Leu685, Leu687, and Tyr688 were critical for 14B7 binding without greatly affecting toxicity. The K684A and L685A variants exhibited wild type levels of toxicity in cell culture assays; the L687A and Y688A variants were reduced only 1.5- and 5-fold, respectively.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigens, Bacterial , Bacterial Toxins/chemistry , Bacterial Toxins/immunology , Macrophages/immunology , Receptors, Peptide/metabolism , Alanine/genetics , Animals , Aspartic Acid/genetics , Aspartic Acid/metabolism , Bacterial Toxins/genetics , Binding Sites/immunology , Cell Line , Macrophages/cytology , Macrophages/microbiology , Mice , Models, Chemical , Mutation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...