Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Vet J ; 300-302: 106041, 2023.
Article in English | MEDLINE | ID: mdl-37931872

ABSTRACT

Sex effects on ventilatory and oxygen consumption (V̇O2) measurements during exercise have been identified in humans. This study's aim was to evaluate the hypothesis that there are sex effects on ventilatory and V̇O2 measurements in exercising, untrained yearling Thoroughbreds (Tb). Forty-one Tbs (16 colts, 25 fillies; 19.8 ± 1.4 months old) were recruited. Physiological, ventilatory and exercise data were gathered from horses exercising unridden at high intensity on an all-weather track from a global positioning-heart rate unit and a portable ergospirometry system. Data were analysed with an unpaired Student's t-test and the Benjamini-Hochberg correction for multiple testing (P ≤ 0.05 significant). Mean bodyweight (BW, P = 0.002) and wither height (P = 0.04) were greater for colts than fillies. There were no differences in physiological and exercise data and absolute peak V̇O2 between groups. However, fillies had a higher mass specific peak V̇O2 (P = 0.03) than colts (121.5 ± 21.6 mL/kg.min vs. 111.9 ± 27.4 mL/kg.min). The peak breathing frequency was greater for fillies (P < 0.001) while the peak inspiratory (P < 0.001) and expiratory air flow (P < 0.001), peak expiratory tidal volume (VTE; P < 0.001) and peak minute ventilation (V̇E; P = 0.01) were greater for colts; there were no differences for peak VTE and V̇E when adjusted for BW. Differences in BW explain the differences in mass specific peak V̇O2 between groups. Given their morphological differences, it is likely that lung volumes and airway diameters are smaller for fillies, resulting in greater resistance and lower air flows and volumes. Further research is required to investigate the ventilatory differences and how they may change with maturation and impact performance.


Subject(s)
Oxygen Consumption , Respiration , Male , Animals , Humans , Horses , Female , Exercise Test/veterinary , Heart Rate , Weather , Oxygen
2.
Anim Genet ; 50(6): 670-685, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31508842

ABSTRACT

Despite strong selection for athletic traits in Thoroughbred horses, there is marked variation in speed and aptitude for racing performance within the breed. Using global positioning system monitoring during exercise training, we measured speed variables and temporal changes in speed with age to derive phenotypes for GWAS. The aim of the study was to test the hypothesis that genetic variation contributes to variation in end-point physiological traits, in this case galloping speed measured during field exercise tests. Standardisation of field-measured phenotypes was attempted by assessing horses exercised on the same gallop track and managed under similar conditions by a single trainer. PCA of six key speed indices captured 73.9% of the variation with principal component 1 (PC1). Verifying the utility of the phenotype, we observed that PC1 (median) in 2-year-old horses was significantly different among elite, non-elite and unraced horses (P < 0.001) and the temporal change with age in PC1 varied among horses with different myostatin (MSTN) g.66493737C>T SNP genotypes. A GWAS for PC1 in 2-year-old horses (n = 122) identified four SNPs reaching the suggestive threshold for association (P < 4.80 × 10-5 ), defining a 1.09 Mb candidate region on ECA8 containing the myosin XVIIIB (MYO18B) gene. In a GWAS for temporal change in PC1 with age (n = 168), five SNPs reached the suggestive threshold for association and defined candidate regions on ECA2 and ECA11. Both regions contained genes that are significantly differentially expressed in equine skeletal muscle in response to acute exercise and training stimuli, including MYO18A. As MYO18A plays a regulatory role in the skeletal muscle response to exercise, the identified genomic variation proximal to the myosin family genes may be important for the regulation of the response to exercise and training.


Subject(s)
Horses/genetics , Horses/physiology , Physical Conditioning, Animal , Animals , Female , Genetic Association Studies , Genome-Wide Association Study , Geographic Information Systems , Locomotion , Male , Muscle, Skeletal/physiology , Myostatin/genetics , Polymorphism, Single Nucleotide
3.
Anim Genet ; 50(4): 347-357, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31257665

ABSTRACT

Durability traits in Thoroughbred horses are heritable, economically valuable and may affect horse welfare. The aims of this study were to test the hypotheses that (i) durability traits are heritable and (ii) genetic data may be used to predict a horse's potential to have a racecourse start. Heritability for the phenotype 'number of 2- and 3-year-old starts' was estimated to be h m 2  = 0.11 ± 0.02 (n = 4499). A genome-wide association study identified SNP contributions to the trait. The neurotrimin (NTM), opioid-binding protein/cell adhesion molecule like (OPCML) and prolylcarboxypeptidase (PRCP) genes were identified as candidate genes associated with the trait. NTM functions in brain development and has been shown to have been selected during the domestication of the horse. PRCP is an established expression quantitative trait locus involved in the interaction between voluntary exercise and body composition in mice. We hypothesise that variation at these loci contributes to the motivation of the horse to exercise, which may influence its response to the demands of the training and racing environment. A random forest with mixed effects (RFME) model identified a set of SNPs that contributed to 24.7% of the heritable variation in the trait. In an independent validation set (n = 528 horses), the cohort with high genetic potential for a racecourse start had significantly fewer unraced horses (16% unraced) than did low (27% unraced) potential horses and had more favourable race outcomes among those that raced. Therefore, the information from SNPs included in the model may be used to predict horses with a greater chance of a racecourse start.


Subject(s)
Horses/genetics , Horses/physiology , Animals , Genome-Wide Association Study , Models, Biological , Phenotype , Physical Conditioning, Animal , Polymorphism, Single Nucleotide
4.
Equine Vet J ; 51(5): 625-633, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30604488

ABSTRACT

BACKGROUND: Race distance aptitude in Thoroughbred horses is highly heritable and is influenced largely by variation at the myostatin gene (MSTN). OBJECTIVES: In addition to MSTN, we hypothesised that other modifying loci contribute to best race distance. STUDY DESIGN: Using 3006 Thoroughbreds, including 835 'elite' horses, which were >3 years old, had race records and were sampled from Europe/Middle-East, Australia/New Zealand, North America and South Africa, we performed genome-wide association (GWA) tests and separately developed a genomic prediction algorithm to comprehensively catalogue additive genetic variation contributing to best race distance. METHODS: 48,896 single-nucleotide polymorphism (SNP) genotypes were generated from high-density SNP genotyping arrays. Heritability estimates, tests of GWA and genomic prediction models were derived for the phenotypes: average race distance, best race distance for elite, nonelite and all winning horses. RESULTS: Heritability estimates were high ( h m 2  = 0.51, best race distance - elite; h m 2  = 0.42, best race distance - nonelite; h m 2  = 0.40, best race distance - all) and most of the variation was attributed to the MSTN gene. MSTN locus SNPs were the most strongly associated with the trait and included BIEC2-438999 (ECA18:66913090; P = 4.51 × 10-110 , average race distance; P = 2.33 × 10-42 , best race distance - elite). The genomic prediction algorithm enabled the inclusion of variation from all SNPs in a model that partitioned horses into short and long cohorts following assignment of MSTN genotype. Additional genes with minor contributions to best race distance were identified. MAIN LIMITATIONS: The nongenetic influence of owner/trainer decisions on placement of horses in suitable races could not be controlled. CONCLUSIONS: MSTN is the single most important genetic contributor to best race distance in the Thoroughbred. Employment of genetic prediction models will lead to more accurate placing of horses in races that are best suited to their inherited genetic potential for distance aptitude.


Subject(s)
Horses/genetics , Myostatin/metabolism , Polymorphism, Single Nucleotide , Sports , Animal Distribution , Animals , Genome-Wide Association Study , Horses/physiology , Myostatin/genetics , Physical Conditioning, Animal , Physical Endurance
5.
Equine Vet J ; 51(2): 179-184, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29935025

ABSTRACT

BACKGROUND: Conflicting results have been reported for risk factors for recurrent laryngeal neuropathy (RLN) based on resting endoscopic evaluation and comparison of single conformation traits, with many traits correlated to one another. OBJECTIVES: To simplify identification of signalment and conformation traits (i.e. variables) associated with RLN cases and controls diagnosed with exercising overground endoscopy (OGE) using exploratory factor analysis (EFA). STUDY DESIGN: Prospective cohort. METHODS: Pearson's rank correlation was used to establish significance and association between variables collected from n = 188 Thoroughbreds from one stable by observers blinded to OGE results. Exploratory factor analysis was conducted on nine variables for cases and controls; common elements between variables developed a factor, with variables grouped into three factors for cases and controls respectively. Correlation (loading) between each variable and factor was calculated to rank relationships between variables and cases/controls, with factors retrospectively named based on their underlying correlations with variables. RESULTS: Numerous inter-correlations were present between variables. Most strongly correlated in cases were wither height with body weight (r = 0.70) and ventral neck length (r = 0.68) and in controls body weight with rostral neck circumference (r = 0.58). Wither height (r = 0.61) significantly loaded the top-ranked factor for cases ('heightRLN '), explaining 25% of conformational variance. Ventral neck length (r = 0.69) and age (r = 0.57) significantly loaded the second-ranked factor for cases ('neck lengthRLN '), explaining 16% of conformational variance. Rostral neck circumference (r = 0.86) and body weight (r = 0.6) significantly loaded the top-ranked factor for controls ('body sizeCON '), explaining 19% of the variance. Wither height (r = 0.84) significantly loaded the second-ranked factor for controls ('heightCON '), explaining 13% of the variance. MAIN LIMITATIONS: Horses had not reached skeletal maturity. CONCLUSIONS: Exploratory factor analysis allowed weightings to be determined for each variable. Wither height was the predominant conformational feature associated with RLN. Exploratory factor analysis confirms aggregated conformational differences exist between RLN cases and controls, suitable for future evaluations.


Subject(s)
Horse Diseases/diagnosis , Vocal Cord Paralysis/veterinary , Animals , Cohort Studies , Factor Analysis, Statistical , Female , Horse Diseases/etiology , Horses , Larynx/pathology , Male , Retrospective Studies , Vocal Cord Paralysis/etiology , Vocal Cord Paralysis/pathology
6.
Anim Genet ; 49(3): 193-204, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29230835

ABSTRACT

Adaptation to early training and racing (i.e. precocity), which is highly variable in racing Thoroughbreds, has implications for the selection and training of horses. We hypothesised that precocity in Thoroughbred racehorses is heritable. Age at first sprint training session (work day), age at first race and age at best race were used as phenotypes to quantify precocity. Using high-density SNP array data, additive SNP heritability (hSNP2) was estimated to be 0.17, 0.14 and 0.17 for the three traits respectively. In genome-wide association studies (GWAS) for age at first race and age at best race, a 1.98-Mb region on equine chromosome 18 (ECA18) was identified. The most significant association was with the myostatin (MSTN) g.66493737C>T SNP (P = 5.46 × 10-12 and P = 1.89 × 10-14 respectively). In addition, two SNPs on ECA1 (g.37770220G>A and g.37770305T>C) within the first intron of the serotonin receptor gene HTR7 were significantly associated with age at first race and age at best race. Although no significant associations were identified for age at first work day, the MSTN:g.66493737C>T SNP was among the top 20 SNPs in the GWAS (P = 3.98 × 10-5 ). Here we have identified variants with potential roles in early adaptation to training. Although there was an overlap in genes associated with precocity and distance aptitude (i.e. MSTN), the HTR7 variants were more strongly associated with precocity than with distance. Because HTR7 is closely related to the HTR1A gene, previously implicated in tractability in young Thoroughbreds, this suggests that behavioural traits may influence precocity.


Subject(s)
Horses/genetics , Physical Conditioning, Animal , Polymorphism, Single Nucleotide , Age Factors , Animals , Female , Genetic Association Studies , Genotype , Male , Myostatin/genetics , Phenotype , Receptors, Serotonin/genetics
7.
BMC Vet Res ; 13(1): 347, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29166903

ABSTRACT

BACKGROUND: Circulating miRNAs (ci-miRNAs) are endogenous, non-coding RNAs emerging as potential diagnostic biomarkers. Equine miRNAs have been previously identified including subsets of tissue-specific miRNAs. In order to investigate ci-miRNAs as diagnostic tools, normal patterns of expression for different scenarios including responses to exercise need to be identified. Human studies have demonstrated that many ci-miRNAs are up-regulated following exercise with changes in expression patterns in skeletal muscle. However, technical challenges such as haemolysis impact on accurate plasma ci-miRNA quantification, with haemolysis often occurring naturally in horses following moderate-to-intense exercise. The objectives of this study were to identify plasma ci-miRNA profiles and skeletal muscle miRNAs before and after exercise in Thoroughbreds (Tb), and to evaluate for the presence and effect of haemolysis on plasma ci-miRNA determination. Resting and post-exercise plasma ci-miRNA profiles and haemolysis were evaluated in twenty 3 year-old Tbs in sprint training. Resting and post-exercise skeletal muscle miRNA abundance was evaluated in a second cohort of eleven 2 year-old Tbs just entering sprint training. Haemolysis was further quantified in resting blood samples from twelve Tbs in sprint training. A human plasma panel containing 179 miRNAs was used for profiling, with haemolysis assessed spectrophotometrically. Data was analysed using a paired Student's t-test and Pearson's rank correlation. RESULTS: Plasma ci-miRNA data for 13/20 horses and all skeletal muscle miRNA data passed quality control. From plasma, 52/179 miRNAs were detected at both time-points. Haemolysis levels were greater than the threshold for accurate quantification of ci-miRNAs in 18/25 resting and all post-exercise plasma samples. Positive correlations (P < 0.05) between haemolysis and miRNA abundance were detected for all but 4 miRNAs, so exercise-induced changes in plasma ci-miRNA expression could not be quantified. In skeletal muscle samples, 97/179 miRNAs were detected with 5 miRNAs (miR-21-5p, let-7d-3p, let-7d-5p, miR-30b-5p, miR-30e-5p) differentially expressed (DE, P < 0.05) between time-points. CONCLUSIONS: The degree of haemolysis needs to be determined prior to quantifying plasma ci-miRNA expression from horses in high-intensity exercise training. Identification of DE miRNAs in skeletal muscle indicates modification of miRNA expression may contribute to adaptive training responses in Tbs. Using a human plasma panel likely limited detection of equine-specific miRNAs.


Subject(s)
Horses/metabolism , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Animals , Female , Hemolysis/physiology , Horses/blood , Male , MicroRNAs/blood , Rest/physiology
8.
Anim Genet ; 43(2): 153-62, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22404351

ABSTRACT

Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) has emerged as a critical control factor in skeletal muscle adaptation to exercise, acting via transcriptional control of genes responsible for angiogenesis, fatty acid oxidation, oxidative phosphorylation, mitochondrial biogenesis and muscle fibre type composition. In a previous study, we demonstrated a significant increase in mRNA expression for the gene encoding PGC-1α (PPARGC1A) in Thoroughbred horse skeletal muscle following a single bout of endurance exercise. In this study, we investigated mRNA expression changes in genes encoding transcriptional coactivators of PGC-1α and genes that function upstream and downstream of PGC-1α in known canonical pathways. We used linear regression to determine the associations between PPARGC1A mRNA expression and expression of the selected panel of genes. Biopsy samples were obtained from the gluteus medius pre-exercise (T(0) ), immediately post-exercise (T(1) ) and 4 h post-exercise (T(2) ). Significant (P < 0.05) expression fold change differences relative to T(0) were detected for genes functioning in angiogenesis (ANGP2 and VEGFA); Ca(2+) -dependent signalling pathway (PPP3CA); carbohydrate/glucose metabolism (PDK4); fatty acid metabolism/mitochondrial biogenesis (PPPARGC1B); haem biosynthetic process (ALAS1); insulin signalling (FOXO1, PPPARGC1A and SLC2A4); mitogen-activated protein kinase signalling (MAPK14 and MEF2A); and myogenesis (HDAC9). Gene expression associations were identified between PPARGC1A and genes involved in angiogenesis, mitochondrial respiration, glucose transport, insulin signalling and transcriptional regulation. These results suggest that PGC-1α and genes regulated by PGC-1α play significant roles in the skeletal muscle response to exercise and therefore may contribute to performance potential in Thoroughbred horses.


Subject(s)
Energy Metabolism , Horses/genetics , Horses/metabolism , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Animals , Male , Peroxisome Proliferator-Activated Receptors/genetics , Physical Conditioning, Animal
9.
Anim Genet ; 41 Suppl 2: 56-63, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21070277

ABSTRACT

Athletic performance is influenced by a complex interplay among the environment and a suite of genes, which contributes to system-wide structure and function. In a panel of elite and non-elite Thoroughbred horses (n=148), we genotyped 68 SNPs in 17 putative exercise-relevant genes chosen from a genome scan for selection. We performed a series of case-control and quantitative association tests for relationships with racecourse performance. Thirteen SNPs in nine genes were significantly (P<0.05) associated with a performance phenotype. We selected five SNPs in four genes (ACSS1, ACN9, COX4I1, PDK4) for validation in an independent sample set of elite and non-elite Thoroughbreds (n=130). Two SNPs in the PDK4 gene were validated (P<0.01) for associations with elite racing performance. When all samples were considered together (n=278), the PDK4_ 38973231 SNP was strongly associated (P<0.0005) with elite racing performance. Individuals with the A:A and A:G genotypes had a 16.2-16.6 lb advantage over G:G individuals in terms of handicap rating. Re-sequencing of the PDK4 gene and further genotyping will be required to identify the causative variant that is likely influencing exercise-induced variation in expression of the gene. Notwithstanding, this information may be employed as a marker for the selection of racehorses with the genetic potential for superior racing ability.


Subject(s)
Genome , Horses/genetics , Polymorphism, Single Nucleotide , Animals , Case-Control Studies , Horses/physiology , Physical Conditioning, Animal/physiology , Quantitative Trait Loci
10.
Equine Vet J Suppl ; (38): 569-75, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21059062

ABSTRACT

REASONS FOR PERFORMING STUDY: The wild progenitors of the domestic horse were subject to natural selection for speed and stamina for millennia. Uniquely, this process has been augmented in Thoroughbreds, which have undergone at least 3 centuries of intense artificial selection for athletic phenotypes. While the phenotypic adaptations to exercise are well described, only a small number of the underlying genetic variants contributing to these phenotypes have been reported. OBJECTIVES: A panel of candidate performance-related genes was examined for DNA sequence variation in Thoroughbreds and the association with racecourse performance investigated. MATERIALS AND METHODS: Eighteen candidate genes were chosen for their putative roles in exercise. Re-sequencing in Thoroughbred samples was successful for primer sets in 13 of these genes. SNPs identified in this study and from the EquCab2.0 SNP database were genotyped in 2 sets of Thoroughbred samples (n = 150 and 148) and a series of population-based case-control investigations were performed by separating the samples into discrete cohorts on the basis of retrospective racecourse performance. RESULTS: Twenty novel SNPs were detected in 3 genes: ACTN3, CKM and COX4I2. Genotype frequency distributions for 3 SNPs in CKM and COX4I2 were significantly (P < 0.05) different between elite Thoroughbreds and racehorses that had never won a race. These associations were not validated when an additional (n = 130) independent set of samples was genotyped, but when analyses included all samples (n = 278) the significance of association at COX4I2 g.22684390C > T was confirmed (P < 0.02). CONCLUSIONS: While molecular genetic information has the potential to become a powerful tool to make improved decisions in horse industries, it is vital that rigour is applied to studies generating these data and that adequate and appropriate sample sets, particularly for independent replication, are used.


Subject(s)
Creatine Kinase, MM Form/metabolism , Electron Transport Complex IV/metabolism , Horses/genetics , Horses/physiology , Running/physiology , Animals , Creatine Kinase, MM Form/genetics , Electron Transport Complex IV/genetics , Gene Expression Regulation/physiology , Polymorphism, Single Nucleotide
11.
Equine Vet J Suppl ; (38): 576-81, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21059063

ABSTRACT

REASONS FOR PERFORMING STUDY: The role of molecular signalling pathways in the phenotypic adaptation of skeletal muscle to different exercise stimuli in the Thoroughbred horse has not been reported previously. OBJECTIVE: To examine CKM, COX4I1, COX4I2 and PDK4 gene expression following high intensity sprint and moderate intensity treadmill exercise stimuli in skeletal muscle of Thoroughbred horses. MATERIALS AND METHODS: Two groups of trained 3-year-old Thoroughbred horses participated. Group A (n = 6 females, n = 3 males) participated in an incremental step test (moderate intensity) to fatigue or HR(max) on a Sato high speed treadmill (distance = 5418.67 m ± 343.21). Group B (n = 8 females) participated in routine 'work' (sprint) on an all-weather gallop (distance = 812.83 m ± 12.53). Biopsy samples were obtained from the gluteus medius pre-exercise (T(0)), immediately post exercise (T(1)) and 4 h post exercise (T(2)). For physiological relevance venous blood samples were collected to measure plasma lactate and creatine kinase concentrations. Changes in mRNA expression were determined by quantitative real-time RT-PCR for creatine kinase muscle (CKM), cytochrome c oxidase subunit IV isoform 1 (COX4I1), cytochrome c oxidase subunit IV isoform 2 (COX4I2) and pyruvate dehydrogenase kinase, isozyme 4 (PDK4) genes. Statistical significance (α < 0.05) was determined using Student's t tests. RESULTS: COX4I2 mRNA expression decreased significantly in Group A and remained unchanged in Group B between T(0) vs. T(2) (-1.7-fold, P = 0.017; -1.0-fold, P = 0.859). PDK4 mRNA expression increased significantly in Group B but not in Group A between T(0) vs. T(1) (3.8-fold, P = 0.039; 1.4-fold, P = 0.591). There were no significant changes in the expression in CKM or COX4I1 mRNA abundance in either group. CONCLUSIONS: Different exercise protocols elicit variable transcriptional responses in key exercise relevant genes in equine skeletal muscle due to variation in metabolic demand.


Subject(s)
Electron Transport Complex IV/metabolism , Gene Expression Regulation/physiology , Horses/genetics , Horses/physiology , Physical Conditioning, Animal/physiology , Protein Kinases/metabolism , Animals , Electron Transport Complex IV/genetics , Exercise Test , Female , Male , Muscle, Skeletal/metabolism , Protein Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...