Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 145: 105313, 2022 06.
Article in English | MEDLINE | ID: mdl-35405400

ABSTRACT

Rare disease data is often fragmented within multiple heterogeneous siloed regional disease registries, each containing a small number of cases. These data are particularly sensitive, as low subject counts make the identification of patients more likely, meaning registries are not inclined to share subject level data outside their registries. At the same time access to multiple rare disease datasets is important as it will lead to new research opportunities and analysis over larger cohorts. To enable this, two major challenges must therefore be overcome. The first is to integrate data at a semantic level, so that it is possible to query over registries and return results which are comparable. The second is to enable queries which do not take subject level data from the registries. To meet the first challenge, this paper presents the FAIRVASC ontology to manage data related to the rare disease anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV), which is based on the harmonisation of terms in seven European data registries. It has been built upon a set of key clinical questions developed by a team of experts in vasculitis selected from the registry sites and makes use of several standard classifications, such as Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) and Orphacode. It also presents the method for adding semantic meaning to AAV data across the registries using the declarative Relational to Resource Description Framework Mapping Language (R2RML). To meet the second challenge a federated querying approach is presented for accessing aggregated and pseudonymized data, and which supports analysis of AAV data in a manner which protects patient privacy. For additional security the federated querying approach is augmented with a method for auditing queries (and the uplift process) using the provenance ontology (PROV-O) to track when queries and changes occur and by whom. The main contribution of this work is the successful application of semantic web technologies and federated queries to provide a novel infrastructure that can readily incorporate additional registries, thus providing access to harmonised data relating to unprecedented numbers of patients with rare disease, while also meeting data privacy and security concerns.


Subject(s)
Semantic Web , Vasculitis , Humans , Rare Diseases , Registries , Systematized Nomenclature of Medicine
2.
IEEE Trans Cybern ; 49(9): 3278-3292, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30028719

ABSTRACT

This paper presents a cloud-based building energy management system, underpinned by semantic middleware, that integrates an enhanced sensor network with advanced analytics, accessible through an intuitive Web-based user interface. The proposed solution is described in terms of its three key layers: 1) user interface; 2) intelligence; and 3) interoperability. The system's intelligence is derived from simulation-based optimized rules, historical sensor data mining, and a fuzzy reasoner. The solution enables interoperability through a semantic knowledge base, which also contributes intelligence through reasoning and inference abilities, and which are enhanced through intelligent rules. Finally, building energy performance monitoring is delivered alongside optimized rule suggestions and a negotiation process in a 3-D Web-based interface using WebGL. The solution has been validated in a real pilot building to illustrate the strength of the approach, where it has shown over 25% energy savings. The relevance of this paper in the field is discussed, and it is argued that the proposed solution is mature enough for testing across further buildings.

SELECTION OF CITATIONS
SEARCH DETAIL
...