Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 14(5): 1436-1449, 2021 May.
Article in English | MEDLINE | ID: mdl-34025777

ABSTRACT

Invasive species are a global economic and ecological problem. They also offer an opportunity to understand evolutionary processes in a colonizing context. The impacts of evolutionary factors, such as genetic variation, on the invasion process are increasingly appreciated, but there remain gaps in the empirical literature. The adaptive potential of populations can be quantified using genetic variance-covariance matrices (G), which encapsulate the heritable genetic variance in a population. Here, we use a multivariate Bayesian approach to assess the adaptive potential of invasive populations of ragweed (Ambrosia artemisiifolia), a serious allergen and agricultural weed. We compared several aspects of genetic architecture and the structure of G matrices between three native and three introduced populations, based on phenotypic data collected in a field common garden experiment. We found moderate differences in the quantitative genetic architecture among populations, but we did not find that introduced populations suffer from a limited adaptive potential or increased genetic constraint compared with native populations. Ragweed has an annual life history, is an obligate outcrosser, and produces very large numbers of seeds and pollen grains. These characteristics, combined with the significant additive genetic variance documented here, suggest ragweed will be able to respond quickly to selection pressures in both its native and introduced ranges.

2.
Ecol Evol ; 10(11): 4595-4608, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551046

ABSTRACT

As introduced species expand their ranges, they often encounter differences in climate which are often correlated with geography. For introduced species, encountering a geographically variable climate sometimes leads to the re-establishment of clines seen in the native range. However, clines can also be caused by neutral processes, and so it is important to gather additional evidence that population differentiation is the result of selection as opposed to nonadaptive processes. Here, we examine phenotypic and genetic differences in ragweed from the native (North America) and introduced (European) ranges. We used a common garden to assess phenotypic differentiation in size and flowering time in ragweed populations. We found significant parallel clines in flowering time in both North America and Europe. Height and branch number had significant clines in North America, and, while not statistically significant, the patterns in Europe were the same. We used SNP data to assess population structure in both ranges and to compare phenotypic differentiation to neutral genetic variation. We failed to detect significant patterns of isolation by distance, geographic patterns in population structure, or correlations between the major axes of SNP variation and phenotypes or latitude of origin. We conclude that the North American clines in size and the parallel clines seen for flowering time are most likely the result of adaptation.

3.
PeerJ ; 3: e898, 2015.
Article in English | MEDLINE | ID: mdl-25909038

ABSTRACT

Flowering is one of the most influential events in the life history of a plant and one of the main determinants of reproductive investment and lifetime fitness. It is also a highly complex trait controlled by dozens of genes. Understanding the selective pressures influencing time to flowering, and being able to reliably predict how it will evolve in novel environments, are unsolved challenges for plant evolutionary geneticists. Using the model plant species, Arabidopsis thaliana, we examined the impact of simulated high and low winter precipitation levels on the flowering time of naturalized lines from across the eastern portion of the introduced North American range, and the fitness consequences of early versus late flowering. Flowering time order was significantly correlated across two environments-in a previous common garden experiment and in environmental chambers set to mimic mid-range photoperiod and temperature conditions. Plants in low water flowered earlier, had fewer basal branches and produced fewer fruits. Selection in both treatments favored earlier flowering and more basal branches. Our analyses revealed an interaction between flowering time and water treatment for fitness, where flowering later was more deleterious for fitness in the low water treatment. Our results are consistent with the hypothesis that differences in winter precipitation levels are one of the selective agents underlying a flowering time cline in introduced A. thaliana populations.

4.
Evolution ; 64(10): 2887-903, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20662920

ABSTRACT

Trade-offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competition and resource availability on trade-offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth analysis to estimate intrinsic growth rates. To estimate across-environment constraints, we developed a variance decomposition approach to principal components analysis, which accounted for sample size, model-fitting, and within-RIL variation prior to eigenanalysis. We detected negative across-environment genetic covariances in intrinsic growth rates, although only under full-light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the frequency of different density environments across space and time. We combined our empirical estimates of across-environment genetic variance-covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our results highlight the importance of considering both the frequency of selective environments and the across-environment genetic covariances in traits simultaneously.


Subject(s)
Evolution, Molecular , Impatiens/growth & development , Impatiens/genetics , Selection, Genetic , Environment , Genetic Variation , Impatiens/metabolism , Light , Population Dynamics
5.
New Phytol ; 183(3): 880-891, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19573136

ABSTRACT

Shade avoidance syndrome is a known adaptive response for Impatiens capensis growing in dense intraspecific competition. However, I. capensis also grow with dominant interspecific competitors in marshes. Here, we compare the I. capensis shade-avoidance phenotypes produced in the absence and presence of heterospecific competitors, as well as selection on those traits. Two treatments were established in a marsh; in one treatment all heterospecifics were removed, while in the other, all competitors remained. We compared morphological traits, light parameters, seed output and, using phenotypic selection analysis, examined directional and nonlinear selection operating in the different competitive treatments. Average phenotypes, light parameters and seed production all varied depending on competitive treatment. Phenotypic selection analyses revealed different directional, disruptive, stabilizing and correlational selection. The disparities seen in both phenotypes and selection between the treatments related to the important differences in elongation timing depending on the presence of heterospecifics, although environmental covariances between traits and fitness could also contribute. Phenotypes produced by I. capensis depend on their competitive environment, and differing selection on shade-avoidance traits between competitive environments could indirectly select for increased plasticity given gene flow between populations in different competitive contexts.


Subject(s)
Impatiens/physiology , Selection, Genetic , Fruit/growth & development , Light , Models, Genetic , Phenotype , Population Dynamics , Seeds/growth & development , Species Specificity , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...