Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Access Microbiol ; 6(4)2024.
Article in English | MEDLINE | ID: mdl-38737804

ABSTRACT

Faecal pollution of water by bacteria has a negative effect on water quality and can pose a potential health hazard. Conventional surveillance of microbial water quality relies on the analysis of low-frequency spot samples and is thus likely to miss episodic or periodic pollution. This study aimed to investigate the potential of filter-feeding sponges for time-integrated biomonitoring of microbial water quality. Laboratory trials tested the effects of different ratios of bacterial abundance and the sequence of exposure on bacterial retention by the freshwater sponge Ephydatia fluviatilis (Linnaeus, 1759) to establish its potential to indicate bacterial exposure. Gemmule grown sponges were simultaneously exposed to Escherichia coli and Enterococcus faecalis but at different ratios (Trial 1) or individually exposed to each bacterial species but in different sequential order (Trial 2). The E. coli and E. faecalis retained in each sponge was quantified by culture on selective agars. Data analysis was conducted using the Kruskal-Wallis test and/or the Mann-Whitney U test to compare between the numbers of bacteria retained in each treatment. Additionally, the Wilcoxon matched-paired signed-rank test was used for comparison of the different bacterial abundances retained within each individual sponge. Sponges from all trials retained E. coli and E. faecalis in small numbers relative to the exposure (<0.05 % Trial 1 and <0.07 % Trial 2) but exhibited higher retention of E. coli. Higher abundance of either bacterial species resulted in significantly lower (P<0.005) retention of the same species within sponges (Trial 1). An initial exposure to E. coli resulted in significantly higher (P=0.040) retention of both bacterial species than when sponges were exposed to E. faecalis first (Trial 2).Bacterial retention by sponges was neither quantitatively representative of bacterial abundance in the ambient water nor the sequence of exposure. This implies either selective filtration or an attempt by sponges to prevent infection. However, freshwater sponges may still be useful in biomonitoring as qualitative time-integrated samplers of faecal indicator bacteria as they detect different bacteria present in the water even if their quantities cannot be estimated.

2.
Ecol Evol ; 8(20): 10192-10205, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30397458

ABSTRACT

Species distribution models (SDMs) are commonly used to model the spatial structure of species in the marine environment, however, most fail to account for detectability of the target species. This can result in underestimates of occupancy, where nondetection is conflated with absence. The site occupancy model (SOM) overcomes this failure by treating occupancy as a latent variable of the model and incorporates a detection submodel to account for variability in detection rates. These have rarely been applied in the context of marine fish and never for the multiseason dynamic occupancy model (DOM). In this study, a DOM is developed for a designated species of concern, cusk (Brosme brosme), over a four-season period. Making novel use of a high-resolution 3-dimensional hydrodynamic model, detectability of cusk is considered as a function of current speed and algae cover. Algal cover on the seabed is measured from video surveys to divide the study area into two distinct regions: those with canopy forming species of algae and those without (henceforth bottom types). Modeled estimates of the proportion of sites occupied in each season are 0.88, 0.45, 0.74, and 0.83. These are significantly greater than the proportion of occupied sites measured from underwater video observations which are 0.57, 0.28, 0.43, and 0.57. Individual fish are detected more frequently with increasing current speed in areas lacking canopy and less frequently with increasing current speed in areas with canopy. The results indicate that, where possible, SDM studies for all marine species should take account of detectability to avoid underestimating the proportion of sites occupied at a given study area. Sampling closed areas or areas of conservation often requires the use of nonphysical, low impact sampling methods like camera surveys. These methods inherently result in detection probabilities less than one, an issue compounded by time-varying features of the environment that are rarely accounted for marine studies. This work highlights the use of modeled hydrodynamics as a tool to correct some of this imbalance.

SELECTION OF CITATIONS
SEARCH DETAIL
...