Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Immunol ; 200(1): 260-270, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29167231

ABSTRACT

The ability of macrophages to respond to chemoattractants and inflammatory signals is important for their migration to sites of inflammation and immune activity and for host responses to infection. Macrophages differentiated from the bone marrow (BM) of UV-irradiated mice, even after activation with LPS, migrated inefficiently toward CSF-1 and CCL2. When BM cells were harvested from UV-irradiated mice and transplanted into naive mice, the recipient mice (UV-chimeric) had reduced accumulation of elicited monocytes/macrophages in the peritoneal cavity in response to inflammatory thioglycollate or alum. Macrophages differentiating from the BM of UV-chimeric mice also had an inherent reduced ability to migrate toward chemoattractants in vitro, even after LPS activation. Microarray analysis identified reduced reticulon-1 mRNA expressed in macrophages differentiated from the BM of UV-chimeric mice. By using an anti-reticulon-1 Ab, a role for reticulon-1 in macrophage migration toward both CSF-1 and CCL2 was confirmed. Reticulon-1 subcellular localization to the periphery after exposure to CSF-1 for 2.5 min was shown by immunofluorescence microscopy. The proposal that reduced reticulon-1 is responsible for the poor inherent ability of macrophages to respond to chemokine gradients was supported by Western blotting. In summary, skin exposure to erythemal UV radiation can modulate macrophage progenitors in the BM such that their differentiated progeny respond inefficiently to signals to accumulate at sites of inflammation and immunity.


Subject(s)
Bone Marrow Cells/physiology , Macrophages/physiology , Nerve Tissue Proteins/metabolism , Animals , Antibodies, Blocking/metabolism , Cell Differentiation , Cell Movement/genetics , Cells, Cultured , Chemokine CCL2/metabolism , Female , Lipopolysaccharides/immunology , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Radiation Chimera , Tissue Array Analysis , Ultraviolet Rays/adverse effects
2.
Exp Hematol ; 56: 64-68, 2017 12.
Article in English | MEDLINE | ID: mdl-28822771

ABSTRACT

Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators.


Subject(s)
Bone Marrow Cells/metabolism , Cell Movement/drug effects , Dinoprostone/pharmacology , Macrophages/metabolism , Monocytes/metabolism , 16,16-Dimethylprostaglandin E2/pharmacology , Animals , Bone Marrow Cells/cytology , Chemokine CCL2/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/cytology , Mice , Monocytes/cytology
3.
Am J Pathol ; 187(9): 2046-2059, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28708972

ABSTRACT

A systemic immunosuppression follows UV irradiation of the skin of humans and mice. In this study, dendritic cells (DCs) differentiating from the bone marrow (BM) of UV-irradiated mice had a reduced ability to migrate toward the chemokine (C-C motif) ligand 21. Fewer DCs also accumulated in the peritoneal cavity of UV-chimeric mice (ie, mice transplanted with BM from UV-irradiated mice) after injection of an inflammatory stimulus into that site. We hypothesized that different metabolic states underpin altered DC motility. Compared with DCs from the BM of nonirradiated mice, those from UV-irradiated mice produced more lactate, consumed more glucose, and had greater glycolytic flux in a bioenergetics stress test. Greater expression of 3-hydroxyanthranilate 3,4-dioxygenase was identified as a potential contributor to increased glycolysis. Inhibition of 3-hydroxyanthranilate 3,4-dioxygenase by 6-chloro-dl-tryptophan prevented both increased lactate production and reduced migration toward chemokine (C-C motif) ligand 21 by DCs differentiated from BM of UV-irradiated mice. UV-induced prostaglandin E2 has been implicated as an intermediary in the effects of UV radiation on BM cells. DCs differentiating from BM cells pulsed in vitro for 2 hours with dimethyl prostaglandin E2 were functionally similar to those from the BM of UV-irradiated mice. Reduced migration of DCs to lymph nodes associated with increased glycolytic flux may contribute to their reduced ability to initiate new immune responses in UV-irradiated mice.


Subject(s)
Bone Marrow Cells/cytology , Cell Movement/radiation effects , Dendritic Cells/cytology , Glycolysis/physiology , Skin/radiation effects , Ultraviolet Rays , Animals , Bone Marrow Cells/metabolism , Dendritic Cells/metabolism , Dinoprostone/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Mice , Skin/metabolism
4.
Inflamm Res ; 64(11): 861-73, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26280298

ABSTRACT

OBJECTIVE: During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. METHODS: Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). RESULTS: Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. CONCLUSIONS: Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.


Subject(s)
Bone Marrow Cells/immunology , Respiratory Hypersensitivity/immunology , Administration, Intranasal , Adoptive Transfer , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Bone Marrow Cells/cytology , Bronchoalveolar Lavage Fluid/cytology , Cell Count , DNA Modification Methylases/antagonists & inhibitors , Decitabine , Dendritic Cells/immunology , Disease Models, Animal , Female , Fluorescein-5-isothiocyanate , Fluorescent Dyes , Immunoglobulin E/blood , Immunoglobulin G/blood , Inflammation , Lipopolysaccharides , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice, Inbred C57BL , Organic Chemicals , Ovalbumin/immunology , Radiation Chimera , Skin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL