Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(21): 4597-4614.e26, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37738970

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/virology , Immunity, Innate/genetics , Pandemics , SARS-CoV-2/genetics
2.
Nat Genet ; 55(3): 471-483, 2023 03.
Article in English | MEDLINE | ID: mdl-36894709

ABSTRACT

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Chromatin , COVID-19/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , SARS-CoV-2 , Transcription Factors/genetics
4.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35012962

ABSTRACT

Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Depsipeptides/therapeutic use , Hospitalization/statistics & numerical data , Peptides, Cyclic/therapeutic use , SARS-CoV-2/drug effects , Adult , Aged , COVID-19/virology , Cell Line, Tumor , Depsipeptides/adverse effects , Depsipeptides/pharmacology , Drug Evaluation, Preclinical/methods , Female , Humans , Kaplan-Meier Estimate , Length of Stay/statistics & numerical data , Male , Middle Aged , Neutropenia/chemically induced , Peptides, Cyclic/adverse effects , Peptides, Cyclic/pharmacology , SARS-CoV-2/physiology , Treatment Outcome , Viral Load/drug effects
5.
Nature ; 602(7897): 487-495, 2022 02.
Article in English | MEDLINE | ID: mdl-34942634

ABSTRACT

The emergence of SARS-CoV-2 variants of concern suggests viral adaptation to enhance human-to-human transmission1,2. Although much effort has focused on the characterization of changes in the spike protein in variants of concern, mutations outside of spike are likely to contribute to adaptation. Here, using unbiased abundance proteomics, phosphoproteomics, RNA sequencing and viral replication assays, we show that isolates of the Alpha (B.1.1.7) variant3 suppress innate immune responses in airway epithelial cells more effectively than first-wave isolates. We found that the Alpha variant has markedly increased subgenomic RNA and protein levels of the nucleocapsid protein (N), Orf9b and Orf6-all known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein that is required for activation of the RNA-sensing adaptor MAVS. Moreover, the activity of Orf9b and its association with TOM70 was regulated by phosphorylation. We propose that more effective innate immune suppression, through enhanced expression of specific viral antagonist proteins, increases the likelihood of successful transmission of the Alpha variant, and may increase in vivo replication and duration of infection4. The importance of mutations outside the spike coding region in the adaptation of SARS-CoV-2 to humans is underscored by the observation that similar mutations exist in the N and Orf9b regulatory regions of the Delta and Omicron variants.


Subject(s)
COVID-19/immunology , COVID-19/virology , Evolution, Molecular , Immune Evasion , Immunity, Innate/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/transmission , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Immunity, Innate/genetics , Interferons/immunology , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Proteomics , RNA, Viral/genetics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/growth & development
6.
J Med Chem ; 64(15): 10951-10966, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34260245

ABSTRACT

Influenza viruses cause approximately half a million deaths every year worldwide. Vaccines are available but partially effective, and the number of antiviral medications is limited. Thus, it is crucial to develop therapeutic strategies to counteract this major pathogen. Influenza viruses enter the host cell via their hemagglutinin (HA) proteins. The HA subtypes of influenza A virus are phylogenetically classified into groups 1 and 2. Here, we identified an inhibitor of the HA protein, a tertiary aryl sulfonamide, that prevents influenza virus entry and replication. This compound shows potent antiviral activity against diverse H1N1, H5N1, and H3N2 influenza viruses encoding HA proteins from both groups 1 and 2. Synthesis of derivatives of this aryl sulfonamide identified moieties important for antiviral activity. This compound may be considered as a lead for drug development with the intent to be used alone or in combination with other influenza A virus antivirals to enhance pan-subtype efficacy.


Subject(s)
Antiviral Agents/pharmacology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/drug effects , Sulfonamides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Virus Internalization/drug effects , Virus Replication/drug effects
7.
Science ; 373(6554): 541-547, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34326236

ABSTRACT

Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Lipidoses/chemically induced , Phospholipids/metabolism , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , COVID-19/virology , Cations , Chlorocebus aethiops , Dose-Response Relationship, Drug , Female , Humans , Mice , Microbial Sensitivity Tests , SARS-CoV-2/physiology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/toxicity , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...