Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892515

ABSTRACT

Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS: C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS: Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION: Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.


Subject(s)
Amino Acids, Branched-Chain , Fructose , Insulin Resistance , Muscle Fibers, Skeletal , Animals , Fructose/pharmacology , Amino Acids, Branched-Chain/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Oxygen Consumption/drug effects
2.
J Cell Biochem ; 125(3): e30520, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38226684

ABSTRACT

Elevated circulating branched-chain amino acids (BCAAs) have been correlated with the severity of insulin resistance, leading to recent investigations that stimulate BCAA metabolism for the potential benefit of metabolic diseases. BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), an inhibitor of branched-chain ketoacid dehydrogenase kinase, promotes BCAA metabolism by enhancing BCKDH complex activity. The purpose of this report was to investigate the effects of BT2 on mitochondrial and glycolytic metabolism, insulin sensitivity, and de novo lipogenesis both with and without insulin resistance. C2C12 myotubes were treated with or without low or moderate levels of BT2 with or without insulin resistance. Western blot and quantitative real-time polymerase chain reaction were used to assess protein and gene expression, respectively. Mitochondrial, nuclei, and lipid content were measured using fluorescent staining and microscopy. Cell metabolism was assessed via oxygen consumption and extracellular acidification rate. Liquid chromatography-mass spectrometry was used to quantify BCAA media content. BT2 treatment consistently promoted mitochondrial uncoupling following 24-h treatment, which occurred largely independent of changes in expressional profiles associated with mitochondrial biogenesis, mitochondrial dynamics, BCAA catabolism, insulin sensitivity, or lipogenesis. Acute metabolic studies revealed a significant and dose-dependent effect of BT2 on mitochondrial proton leak, suggesting BT2 functions as a small-molecule uncoupler. Additionally, BT2 treatment consistently and dose-dependently reduced extracellular BCAA levels without altering expression of BCAA catabolic enzymes or pBCKDHa activation. BT2 appears to act as a small-molecule mitochondrial uncoupler that promotes BCAA utilization, though the interplay between these two observations requires further investigation.


Subject(s)
Insulin Resistance , Insulin , Humans , Amino Acids, Branched-Chain/metabolism , Insulin/metabolism , Muscle Fibers, Skeletal , Protein Kinase Inhibitors/pharmacology , Protons
3.
Cell Biochem Funct ; 41(8): 1422-1429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37916846

ABSTRACT

Type 2 diabetes is characterized by elevated blood glucose and reduced insulin sensitivity in target tissues. Moreover, reduced mitochondrial metabolism and expressional profile of genes governing mitochondrial metabolism (such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha [PGC-1α]) are also reduced during insulin resistance. Epigenetic regulation via DNA methylation of genes including PGC-1α may contribute to diminished mitochondrial capacity, while hypomethylation of PGC-1α (such as that invoked by exercise) has been associated with increased PGC-1α expression and favorable metabolic outcomes. The purpose of the present report is to characterize the effects of DNA hypomethylation on myotube metabolism and expression of several related metabolic targets. C2C12 myotubes were treated with 5-Aza-2'-deoxycytidine (5-Aza) for either 24 or 72 h both with and without hyperinsulinemic-induced insulin resistance. Mitochondrial and glycolytic metabolism were measured via oxygen consumption and extracellular acidification rate, respectively. Metabolic gene and protein expression were assessed via quantitative real time polymerase chain reaction and western blot analysis, respectively. Though expression of PGC-1α and other related targets remained unaltered, insulin resistance and 5-Aza treatment significantly reduced mitochondrial metabolism. Similarly, peak glycolytic metabolism was diminished by 5-Aza-treated cells, while basal glycolytic metabolism was unaltered. 5-Aza also reduced the expression of branched-chain amino acid (BCAA) catabolic components, however BCAA utilization was enhanced during insulin resistance with 5-Aza treatment. Together the present work provides proof-of-concept evidence of the potential role of DNA methylation in the regulation of mitochondrial metabolism and the potential interactions with insulin resistance in a model of skeletal muscle.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/genetics , Decitabine/pharmacology , DNA Methylation , Diabetes Mellitus, Type 2/metabolism , Epigenesis, Genetic , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Insulin/metabolism , Amino Acids, Branched-Chain/genetics , Amino Acids, Branched-Chain/metabolism , DNA/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...