Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 54(2): 163-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25836962

ABSTRACT

Cancer risk assessment of new pharmaceuticals is crucial to protect public health. However, clinical trials lack the duration needed to clearly detect drug-related tumor emergence, and biomarkers suggestive of increased cancer risk from a drug typically are not measured in clinical trials. Therefore, the carcinogenic potential of a new pharmaceutical is extrapolated predominately based on 2-y bioassays in rats and mice. A key drawback to this practice is that the results are frequently positive for tumors and can be irrelevant to human cancer risk for reasons such as dose, mode of action, and species specificity. Alternative approaches typically strive to reduce, refine, and replace rodents in carcinogenicity assessments by leveraging findings in short-term studies, both in silico and in vivo, to predict the likely tumor outcome in rodents or, more broadly, to identify a cancer risk to patients. Given the complexities of carcinogenesis and the perceived impracticality of assessing risk in the course of clinical trials, studies conducted in animals will likely remain the standard by which potential cancer risks are characterized for new pharmaceuticals in the immediate foreseeable future. However, a weight-of-evidence evaluation based on short-term toxicologic, in silico, and pharmacologic data is a promising approach to identify with reasonable certainty those pharmaceuticals that present a likely cancer risk in humans and, conversely, those that do not present a human cancer risk.


Subject(s)
Animal Experimentation , Animals, Laboratory , Carcinogenicity Tests , Animal Welfare , Animals , Biological Assay , Carcinogens/toxicity , Mice , Rats , Species Specificity
2.
Adv Drug Deliv Rev ; 71: 15-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24530633

ABSTRACT

Alveolar macrophage (AM) responses are commonly induced in inhalation toxicology studies, typically being observed as an increase in number or a vacuolated 'foamy' morphology. Discriminating between adaptive AM responses and adverse events during nonclinical and clinical development is a major scientific challenge. When measuring and interpreting induced AM responses, an understanding of macrophage biology is essential; this includes 'sub-types' of AMs with different roles in health and disease and mechanisms of induction/resolution of AM responses to inhalation of pharmaceutical aerosols. In this context, emerging assay techniques, the utility of toxicokinetics and the requirement for new biomarkers are considered. Risk assessment for nonclinical toxicology findings and their translation to effects in humans is discussed from a scientific and regulatory perspective. At present, when apparently adaptive macrophage-only responses to inhaled investigational products are observed in nonclinical studies, this poses a challenge for risk assessment and an improved understanding of induced AM responses to inhaled pharmaceuticals is required.


Subject(s)
Drug Delivery Systems , Drug Design , Macrophages, Alveolar/metabolism , Administration, Inhalation , Aerosols , Animals , Biomarkers/metabolism , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Risk Assessment/methods , Toxicity Tests/methods
3.
Adv Drug Deliv Rev ; 63(1-2): 69-87, 2011.
Article in English | MEDLINE | ID: mdl-21144875

ABSTRACT

Dosimetry, safety and the efficacy of drugs in the lungs are critical factors in the development of inhaled medicines. This article considers the challenges in each of these areas with reference to current industry practices for developing inhaled products, and suggests collaborative scientific approaches to address these challenges. The portfolio of molecules requiring delivery by inhalation has expanded rapidly to include novel drugs for lung disease, combination therapies, biopharmaceuticals and candidates for systemic delivery via the lung. For these drugs to be developed as inhaled medicines, a better understanding of their fate in the lungs and how this might be modified is required. Harmonized approaches based on 'best practice' are advocated for dosimetry and safety studies; this would provide coherent data to help product developers and regulatory agencies differentiate new inhaled drug products. To date, there are limited reports describing full temporal relationships between pharmacokinetic (PK) and pharmacodynamic (PD) measurements. A better understanding of pulmonary PK and PK/PD relationships would help mitigate the risk of not engaging successfully or persistently with the drug target as well as identifying the potential for drug accumulation in the lung or excessive systemic exposure. Recommendations are made for (i) better industry-academia-regulatory co-operation, (ii) sharing of pre-competitive data, and (iii) open innovation through collaborative research in key topics such as lung deposition, drug solubility and dissolution in lung fluid, adaptive responses in safety studies, biomarker development and validation, the role of transporters in pulmonary drug disposition, target localisation within the lung and the determinants of local efficacy following inhaled drug administration.


Subject(s)
Drug Delivery Systems/methods , Drug Design , Pharmaceutical Preparations/administration & dosage , Administration, Inhalation , Animals , Humans , Lung/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...