Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36928716

ABSTRACT

Long-term storage is necessary to mitigate for seasonal variation in algae productivity, to preserve biomass quality and to guarantee a constant biomass supply to a conversion facility. While ensiling has shown promise as a solution, biomass attributes for successful storage are poorly understood. Storage studies of Monoraphidium sp. biomass indicate a strong correlation between nitrogen management in algae cultivation and stability of post-harvest algae biomass. Algae cultivated with periodic nitrogen addition were stored poorly (>20% loss, dry basis) compared to biomass from nitrogen depleted cultivation (8% loss, dry basis). A follow-up study compared the post-harvest stability of Monoraphidium biomass cultivated in nitrogen-deplete or nitrogen-replete conditions. Replete biomass experienced the largest degradation (24%, dry basis), while deplete biomass experienced the least (10%, dry basis). Dry matter loss experienced among blends of each correlated positively with nitrogen-replete biomass content. The composition of the post-storage algae microbial community was also affected by cultivation conditions, with Clostridia species being more prevalent in stored biomass obtained from nitrogen-replete cultivations. Nitrogen management has long been known to influence algae biomass productivity and biochemical composition; here, we demonstrate that it also strongly influences the stability of post-harvest algae biomass in anaerobic storage.


Subject(s)
Microalgae , Nitrogen , Biomass , Nitrogen/metabolism , Follow-Up Studies , Microalgae/metabolism
2.
PLoS One ; 17(4): e0267674, 2022.
Article in English | MEDLINE | ID: mdl-35482813

ABSTRACT

For outdoor cultivation of algal feedstocks to become a commercially viable and sustainable option for biofuel production, algal cultivation must maintain high yields and temporal stability in environmentally variable outdoor ponds. One of the main challenges is mitigating disease outbreaks that leads to culture crashes. Drawing on predictions from the 'dilution effect' hypothesis, in which increased biodiversity is thought to reduce disease risk in a community, a teste of whether algal polycultures would reduce disease risk and improve feedstock production efficiencies compared to monocultures was performed. While the positive benefits of biodiversity on disease risk have been demonstrated in various systems, to the best of our knowledge this is the first test in an algal biofuel system. Here, the results a before-after-control-impact (BACI) experimental design to compare mean monoculture (control) and polyculture (impact) yield, stability, and productivity before and after fungal infection when grown in 400-L outdoor raceway ponds are presented. It has been found that polycultures did not experience a reduction in disease risk compared to monocultures or differ in production efficiencies throughout the course of the 43-day experiment. These results show that polyculture feedstocks can maintain similar levels of productivity, stability, and disease resistance to that of a monoculture. Determining whether these results are generalizable or represent one case study requires additional outdoor experiments using a larger variety of host and pathogen species.


Subject(s)
Biofuels , Ponds , Biodiversity , Plants
3.
Sci Rep ; 11(1): 11649, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079003

ABSTRACT

With fast growth rates, broad halotolerance and the ability to thrive at high temperatures, algae in the genus Picochlorum are emerging as promising biomass producers. Recently, we isolated a remarkably productive strain, Picochlorum celeri, that attains > 40 g m-2 day-1 productivities using simulated outdoor light. To test outdoor productivities, Picochlorum celeri was cultivated in 820 L raceway ponds at the Arizona Center for Algae Technology and Innovation. Picochlorum celeri demonstrated the highest outdoor biomass productivities reported to date at this testbed averaging ~ 31 g m-2 day-1 over four months with a monthly (August) high of ~ 36 g m-2 day-1. Several single day productivities were > 40 g m-2 day-1. Importantly for sustainability, Picochlorum celeri achieved these productivities in saline water ranging from seawater to 50 parts per thousand sea salts, without any biocides or pond crashes, for over 143 days. Lastly, we report robust genetic engineering tools for future strain improvements.


Subject(s)
Algal Proteins/genetics , Chlorophyta/growth & development , Genetic Engineering/methods , Salt Tolerance/genetics , Algal Proteins/metabolism , Biomass , Biotechnology/methods , Chlorophyta/genetics , Chlorophyta/metabolism , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Light , Ponds , Seawater/chemistry
4.
Front Plant Sci ; 9: 1513, 2018.
Article in English | MEDLINE | ID: mdl-30459782

ABSTRACT

Algae offer promising feedstocks for the production of renewable fuel and chemical intermediates. However, poor outdoor winter cultivation capacity currently limits deployment potential. In this study, 300 distinct algal strains were screened in saline medium to determine their cultivation suitability during winter conditions in Mesa, Arizona. Three strains, from the genera Micractinium, Chlorella, and Scenedesmus, were chosen following laboratory evaluations and grown outdoors in 1000 L raceway ponds during the winter. Strains were down-selected based on doubling time, lipid and carbohydrate amount, final biomass accumulation capacity, cell size and phylogenetic diversity. Algal biomass productivity and compositional analysis for lipids and carbohydrates show successful outdoor deployment and cultivation under winter conditions for these strains. Outdoor harvest-yield biomass productivities ranged from 2.9 to 4.0 g/m2/day over an 18 days winter cultivation trial, with maximum productivities ranging from 4.0 to 6.5 g/m2/day, the highest productivities reported to date for algal winter strains grown in saline media in open raceway ponds. Peak fatty acid levels ranged from 9 to 26% percent of biomass, and peak carbohydrate levels ranged from 13 to 34% depending on the strain. Changes in the lipid and carbohydrate profile throughout outdoor growth are reported. This study demonstrates that algal strain screening under simulated outdoor environmental conditions in the laboratory enables identification of strains with robust biomass productivity and biofuel precursor composition. The strains isolated here represent promising winter deployment candidates for seasonal algal biomass production when using crop rotation strategies.

5.
Sci Data ; 5: 180267, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30480663

ABSTRACT

National scale agronomic projections are an important input for assessing potential benefits of algae cultivation on the future of innovative agriculture. The Algae Testbed Public-Private Partnership was established with the goal of investigating open pond algae cultivation across different geographic, climatic, seasonal, and operational conditions while setting the benchmark for quality data collection, analysis, and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework, the Unified Field Studies were designed for algae cultivation during all 4 seasons across the testbed network. With increasingly diverse algae research and development, and field deployment strategies, the challenges associated with data collection, quality, and dissemination increase dramatically. The dataset presented here is the complete, curated, climatic, cultivation, harvest, and biomass composition data for each season at each site. These data enable others to do in-depth cultivation, harvest, techno-economic, life cycle, resource, and predictive growth modelling analysis, as well as development of crop protection strategies throughout the algae cultivation industry.


Subject(s)
Agriculture/methods , Agriculture/standards , Chlorophyta , Public-Private Sector Partnerships/standards , Axenic Culture/methods , Biofuels/microbiology , Biomass , Chlorophyta/growth & development , Chlorophyta/metabolism , Microbiological Phenomena , Public-Private Sector Partnerships/trends , United States
6.
Anal Biochem ; 452: 86-95, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24556245

ABSTRACT

Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently.


Subject(s)
Biomass , Chromatography/methods , Microalgae/chemistry , Microalgae/metabolism , Biofuels/microbiology , Microalgae/growth & development , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...