Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(3): 1989-1992, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38232773

ABSTRACT

We disclose a four-step oxidize-condense-oxidize-condense synthesis pathway to prepare nonsymmetric pyrene-fused pyrazaacenes (PPAs) using our recently discovered oxidation conditions for 2,7-di-tert-butylpyrene. The new pathway results in marked improvements in yields and simplifies purification as compared with the sequential condensation strategy previously employed to make these compounds.

2.
ACS Appl Mater Interfaces ; 13(3): 4267-4277, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33438990

ABSTRACT

The rational design of single-molecule electrical components requires a deep and predictive understanding of structure-function relationships. Here, we explore the relationship between chemical substituents and the conductance of metal-single-molecule-metal junctions, using functionalized oligophenylenevinylenes as a model system. Using a combination of mechanically controlled break-junction experiments and various levels of theory including non-equilibrium Green's functions, we demonstrate that the connection between gas-phase molecular electronic structure and in-junction molecular conductance is complicated by the involvement of multiple mutually correlated and opposing effects that contribute to energy-level alignment in the junction. We propose that these opposing correlations represent powerful new "design principles" because their physical origins make them broadly applicable, and they are capable of predicting the direction and relative magnitude of observed conductance trends. In particular, we show that they are consistent with the observed conductance variability not just within our own experimental results but also within disparate molecular series reported in the literature and, crucially, with the trend in variability across these molecular series, which previous simple models fail to explain. The design principles introduced here can therefore aid in both screening and suggesting novel design strategies for maximizing conductance tunability in single-molecule systems.

3.
Small ; 17(1): e2005216, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33289962

ABSTRACT

Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3 NH3 PbI3 perovskite layer, using two phthalocyanine (Pc) molecules (NP-SC6 -ZnPc and NP-SC6 -TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid-base interactions with under-coordinated Pb2+ sites, leading to efficient defect passivation of the perovskite layer. The tendency of both NP-SC6 -ZnPc and NP-SC6 -TiOPc to relax on the PbI2 terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high-quality thin films with a dense and compact structure and lower surface roughness. Using NP-SC6 -ZnPc and NP-SC6 -TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% for NP-SC6 -TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.

4.
ACS Appl Mater Interfaces ; 11(40): 36535-36543, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31536319

ABSTRACT

We demonstrate a molecular design strategy to enhance the efficiency of phthalocyanine (Pc)-based hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, two titanyl phthalocyanine (TiOPc) derivatives are designed and applied as dopant-free HTMs in planar n-i-p-structured PSCs. The newly developed TiOPc compounds possess eight n-hexylthio groups attached to either peripheral (P-SC6-TiOPc) or nonperipheral (NP-SC6-TiOPc) positions of the Pc ring. Utilizing these dopant-free HTMs in PSCs with a mixed cation perovskite as the light-absorbing material and tin oxide (SnO2) as the electron-transporting material (ETM) results in a considerably enhanced efficiency for NP-SC6-TiOPc-based devices compared to PSCs using P-SC6-TiOPc. Hence, all of the photovoltaic parameters, including power conversion efficiency (PCE), fill factor, open-circuit voltage, and short-circuit current density, are remarkably improved from 5.33 ± 1.01%, 33.34 ± 3.45%, 0.92 ± 0.18 V, and 17.33 ± 2.08 mA cm-2 to 15.83 ± 0.44%, 69.03 ± 1.59%, 1.05 ± 0.01 V, and 21.80 ± 0.36 mA cm-2, respectively, when using the nonperipheral-substituted TiOPc derivative as the HTM in a PSC. Experimental and computational analysis suggests more compact molecular packing for NP-SC6-TiOPc than P-SC6-TiOPc in the solid state due to stronger π-π interactions, leading to thin films with better quality and higher performance in hole extraction and transportation. PSCs with NP-SC6-TiOPc also offer much higher long-term stability than P-SC6-TiOPc-based devices under ambient conditions with a relative humidity of 75%.

5.
ACS Appl Mater Interfaces ; 9(34): 29213-29223, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28795562

ABSTRACT

The efficiency of charge collection at the organic/transparent conducting oxide (TCO) interface in organic photovoltaic (OPV) devices affects overall device efficiency. Modifying the TCO with an electrochemically active molecule may enhance OPV efficiency by providing a charge-transfer pathway between the electrode and the organic active layer, and may also mitigate surface recombination. The synthesis and characterization of phosphonic acid-ruthenium phthalocyanine (RuPcPA) monolayer films on indium tin oxide (ITO), designed to facilitate charge harvesting at ITO electrodes, is presented in this work. The PA group was installed axially relative to the Pc plane so that upon deposition, RuPcPA molecules were preferentially aligned with the ITO surface plane. The tilt angle of 22° between the normal axes to the Pc plane and the ITO surface plane, measured by attenuated total reflectance (ATR) spectroscopy, is consistent with a predominately in-plane orientation. The effect of surface roughness on RuPcPA orientation was modeled, and a correlation was obtained between experimental and theoretical mean tilt angles. Based on electrochemical and spectroelectrochemical studies, RuPcPA monolayers are composed predominately of monomers. Electrochemical impedance spectroscopy (EIS) and potential modulated-ATR (PM-ATR) spectroscopy were used to characterize the electron-transfer (ET) kinetics of these monolayers. A rate constant of 4.0 × 103 s-1 was measured using EIS, consistent with a short tunneling distance between the chromophore and the electrode surface. Using PM-ATR, ks,opt values of 2.2 × 103 and 2.4 × 103 s-1 were measured using TE and TM polarized light, respectively; the similarity of these values is consistent with a narrow molecular orientation distribution and narrow range of tunneling distances. The ionization potential of RuPcPA-modified ITO was measured using ultraviolet photoelectron spectroscopy and the results indicate favorable energetics for hole collection at the RuPcPA/ITO interface, indicating that this type of TCO modification may be useful for enhancing charge collection efficiency in OPV devices.

6.
ACS Appl Mater Interfaces ; 7(43): 23912-9, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26451458

ABSTRACT

We report a route to thin-film polymorphs of soluble TiOPc derivatives that exhibit similar near-IR absorptivities as vapor deposited thin-films of the parent TiOPc chromophore (phase-I and phase-II polymorphs) and demonstrate that solution-processed planar and bulk heterojunction solar cells fabricated with one of these derivatives exhibited photoactivity throughout the same near-IR wavelength range without compromising VOC. Solution-processed thin-films of soluble octakis(alkylthio)-substituted TiOPc derivatives 1-3 exhibit absorption extending to 1000 nm. When incorporated into OPV devices, the contributions from the lowest CT excitonic state (QB band) of 1 to device performance were evident in both PHJ and BHJ architectures, indicating sufficient driving force for PIET. This contribution was improved via intimate mixing of donor and acceptor molecules in a BHJ architecture, albeit with a decrease in efficiency. IPCE of the best performing BHJ device revealed a contribution from 1 exceeding that of acceptor PCBM, and extending to 1000 nm.

7.
Bioorg Med Chem Lett ; 24(18): 4496-4500, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25150377

ABSTRACT

Design, synthesis, characterization, and photodynamic activity of mitochondria specific asymmetric ZnPc-Rh B conjugates are described. Conjugation of asymmetric ZnPc-OH chromophores 3a and 3b with rhodamine B via the corresponding DIC-activated ester gave the desired near IR-absorbing asymmetric ZnPc-Rh B conjugates 1a and 1b. Conjugates 1a and 1b were shown to produce singlet oxygen upon illumination in DMSO, MeOH and THF. Fluorescence aggregation studies of the dyes 1a, 1b, 3a and 3b in DMSO and phosphate buffered saline (PBS) solution showed that conjugates 1a and 1b were less aggregated compared to the corresponding non-conjugates 3a and 3b suggesting that incorporation of Rh B lowered aggregation of the conjugates in the PBS solution. The four dyes studied have logD7.4 values between 2.31 and 2.48, with the sulfur-containing conjugate 1b being the most hydrophobic. All the dyes showed negligible dark toxicity when colon 26 cells were treated with 5 µM of the dyes while 10-15% cell death was observed for dye concentrations of 15 µM. Illumination (700±40 nm, 45 J/cm(2), 15 min) of the cells ([dye]=15 µM) gave 70% cell death for ZnPc-Rh B conjugates 1a and 1b while no killing for non-conjugates 3a and 3b suggesting that the incorporation of the Rh B in the photosensitizer lowered the aggregation and subsequently improved cellular uptake and phototoxicity.


Subject(s)
Indoles/pharmacology , Mitochondria/drug effects , Mitochondria/radiation effects , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Rhodamines/pharmacology , Cell Death/drug effects , Dose-Response Relationship, Drug , Humans , Indoles/chemistry , MCF-7 Cells , Mitochondria/metabolism , Molecular Structure , Organometallic Compounds/chemistry , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Rhodamines/chemistry , Structure-Activity Relationship
8.
J Biomed Mater Res A ; 101(12): 3382-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23554009

ABSTRACT

Poly(ester-urethane-urea) (PEUU) is one of many synthetic biodegradable elastomers under scrutiny for biomedical and soft tissue applications. The goal of this study was to investigate the effect of the experimental parameters on mechanical properties of PEUUs following exposure to different degrading environments, similar to that of the human body, using linear regression, producing one predictive model. The model utilizes two independent variables of poly(caprolactone) (PCL) type and copolymer crystallinity to predict the dependent variable of maximum tangential modulus (MTM). Results indicate that comparisons between PCLs at different degradation states are statistically different (p < 0.0003), while the difference between experimental and predicted average MTM is statistically negligible (p < 0.02). The linear correlation between experimental and predicted MTM values is R(2) = 0.75.


Subject(s)
Materials Testing , Mechanical Phenomena , Models, Theoretical , Polyesters/chemistry , Humans , Stress, Mechanical
9.
J Phys Chem Lett ; 3(9): 1154-8, 2012 May 03.
Article in English | MEDLINE | ID: mdl-26288050

ABSTRACT

Using a monolayer of zinc phthalocyanine (ZnPcPA) tethered to indium tin oxide (ITO) as a model for the donor/transparent conducting oxide (TCO) interface in organic photovoltaics (OPVs), we demonstrate the relationship between molecular orientation and charge-transfer rates using spectroscopic, electrochemical, and spectroelectrochemical methods. Both monomeric and aggregated forms of the phthalocyanine (Pc) are observed in ZnPcPA monolayers. Potential-modulated attenuated total reflectance (PM-ATR) measurements show that the monomeric subpopulation undergoes oxidation/reduction with ks,app = 2 × 10(2) s(-1), independent of Pc orientation. For the aggregated ZnPcPA, faster orientation-dependent charge-transfer rates are observed. For in-plane-oriented Pc aggregates, ks,app = 2 × 10(3) s(-1), whereas for upright Pc aggregates, ks,app = 7 × 10(2) s(-1). The rates for the aggregates are comparable to those required for redox-active interlayer films at the hole-collection contact in organic solar cells.

10.
Langmuir ; 27(24): 14900-9, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22047210

ABSTRACT

Metalated and free-base A(3)B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

11.
Chemistry ; 17(30): 8472-8, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21671288

ABSTRACT

A series of near-IR-absorbing soluble phthalocyanines (Pcs) with eight alkyne moieties as side chains of the chromophore have been synthesized. One of these Pcs has been used as a scaffold for functional group modification using alkyne-azide click chemistry with various azides. This led to a small library of Pcs with photo and thermal crosslinkable, dendritic, and hydrophilic moieties starting from a single Pc molecule. A patterned thin film was fabricated by photocrosslinking one of these Pc derivatives.

12.
J Org Chem ; 75(22): 7893-6, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21028904

ABSTRACT

Solvent-free synthesis of a series of alkylthio-substituted titanyl phthalocyanine (TiOPc) derivatives starting from the corresponding phthalonitriles (Pn) is reported. This methodology eliminates the formation of the unmetalated phthalocyanine (H2Pc), a side product that makes purification difficult. The alkylthio groups on the reported derivatives enhance solubility in common organic solvents and shift the absorption to the near-IR region.

13.
Org Lett ; 12(21): 4944-7, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20925328

ABSTRACT

The convergent synthesis of geometrically degradable dendrimers based on the 2,4-bis(hydroxymethyl)phenol subunit is presented. The key step of the synthetic scheme involves the CuI/3,4,7,8-tetramethyl-1,10-phenanthroline-catalyzed coupling of aryl iodides and alcohols. The synthesis and disassembly of these compounds is discussed.


Subject(s)
Carbon/chemistry , Copper/chemistry , Dendrimers/chemical synthesis , Iodides/chemistry , Oxygen/chemistry , Catalysis , Molecular Structure
14.
J Org Chem ; 75(18): 6154-62, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20738148

ABSTRACT

We report a significant improvement in the synthesis of disassembling dendritic structures by using 4-hydroxy-3-nitrobenzoic acid as the building block. We have prepared multigram quantities of first- through third-generation linearly disassembling dendrons containing a [3-N,4-O]-benzylaryl ether disassembly pathway, capped by a vanillin-derived phenyl allyl ether trigger, and a p-nitrophenoxy (PNP) reporter group. The disassembly process of these materials was initiated by allyl deprotection and monitored by the absorbance of the PNP reporter unit in the UV-vis. Modification of the disassembly conditions for the allyl trigger resulted in decreased disassembly times, decreased incubation time for onset of disassembly from minutes to seconds, and allowed observation of indicative rate differences between generations not seen with the previously reported conditions.


Subject(s)
Dendrimers/chemical synthesis , Phenyl Ethers/chemical synthesis , Dendrimers/chemistry , Molecular Structure , Nitrobenzoates/chemistry , Phenyl Ethers/chemistry , Stereoisomerism
15.
J Am Chem Soc ; 131(38): 13840-3, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19772367

ABSTRACT

Phthalocyanines (Pcs) are commonly applied to advanced technologies such as optical limiting, photodynamic therapy (PDT), organic field-effect transistors (OFETs), and organic photovoltaic (OPV) devices, where they are used as the p-type layer. An approach to Pc structural diversity and the incorporation of a functional group that allows fabrication of solvent resistant Pc nanostructures formed by using a newly developed nanoimprint by melt processing (NIMP) technique, a variant of standard nanoimprint lithography (NIL), is reported. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a click chemistry reaction, serves as an approach to structural diversity in Pc macrocycles. We have prepared octaalkynyl Pc 1b and have modified this Pc using the CuAAC reaction to yield four Pc derivatives 5a-5d with different peripheral substituents on the macrocycle. One of these derivatives, 5c, has photo-cross-linkable cinnamate residues, and we have demonstrated the fabrication of robust cross-linked photopatterned and imprinted nanostructures from this material.

16.
Chem Commun (Camb) ; (22): 3222-4, 2009 Jun 14.
Article in English | MEDLINE | ID: mdl-19587920

ABSTRACT

Quinacridone-cored dendrimers with photocrosslinkable cinnamate moieties on the periphery can be patterned down to 5 micron features while retaining luminescence.

17.
Org Lett ; 11(10): 2061-4, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19388657

ABSTRACT

Statistical condensation of norbornenyl-tagged phthalonitrile 3 (Pn A) and 4,5-di-4-methoxyphenoxyphthalonitrile 4 (Pn B) followed by ring-opening metathesis polymerization (ROMP) of Pcs AB(3) and B(4) produced asymmetric Pc-appended polymers. Acidic cleavage of the resulting polymers afforded 2,3,9,10,16,17-hexa-(4-methoxyphenoxy)-23-hydroxy Pc 9. A more soluble 2,3,9,10,16,17-hexa-4-pentylphenoxy-23-hydroxy Pc 13 was synthesized by the same strategy and modified with sebacoyl chloride demonstrating that the unmasked hydroxyl site is reactive as a nucleophile.


Subject(s)
Chemistry, Organic/methods , Indoles/chemical synthesis , Catalysis , Indoles/chemistry , Isoindoles , Molecular Structure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Mol Pharm ; 2(4): 253-63, 2005.
Article in English | MEDLINE | ID: mdl-16053328

ABSTRACT

We present an overview of an entirely new concept in nanotechnology, dendrimer disassembly. Dendrimer disassembly is a process that relies on a single triggering event to initiate multiple cleavages throughout a dendritic structure that result in release of individual dendrimer subunits or larger dendrimer fragments. The potential of this process lies in (1) the nature of dendrimers as covalent assemblages of active species, and using the chemistry of disassembly to release these species into a system; and (2) the role of dendritic components of a system in influencing solubility, energy harvesting, or insulating capabilities, etc., and using the chemistry of disassembly to reverse those contributions to a system. This is a powerful construct, in that dendrimers and dendritic structures can be made up of a wide variety of subunits, compatibilized with many different environments, and incorporated into countless systems. We anticipate that dendritic materials with disassembly capabilities will (a) be useful for traditional polymer degradation technologies and (b) have potential applications in nanotechnology, biomedicine, sensors, etc.


Subject(s)
Nanotechnology/methods , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/chemical synthesis , Biodegradation, Environmental , Models, Molecular , Molecular Structure , Pharmacokinetics
19.
J Org Chem ; 70(3): 1054-6, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15675869

ABSTRACT

A series of 3,5-poly(aryl ether) dendrons was prepared up to the third generation using inexpensive 3,5-di-tert-butyl-4-hydroxytoluene (BHT, 1) as a starting material.

20.
Chem Commun (Camb) ; (4): 444-6, 2005 Jan 28.
Article in English | MEDLINE | ID: mdl-15654364

ABSTRACT

The first incorporation of quinacridone, a technologically important organic electroluminescent emitter, into dendrimers increases solubility, decreases aggregation, retards heterogeneous electron transfer, and enhances luminescence in condensed phases (powders and thin films).


Subject(s)
Dendrimers/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Luminescence , Electrochemistry , Magnetic Resonance Spectroscopy , Materials Testing , Photochemistry , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...