Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
DNA Res ; 30(1)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36208288

ABSTRACT

A contiguous assembly of the inbred 'EL10' sugar beet (Beta vulgaris ssp. vulgaris) genome was constructed using PacBio long-read sequencing, BioNano optical mapping, Hi-C scaffolding, and Illumina short-read error correction. The EL10.1 assembly was 540 Mb, of which 96.2% was contained in nine chromosome-sized pseudomolecules with lengths from 52 to 65 Mb, and 31 contigs with a median size of 282 kb that remained unassembled. Gene annotation incorporating RNA-seq data and curated sequences via the MAKER annotation pipeline generated 24,255 gene models. Results indicated that the EL10.1 genome assembly is a contiguous genome assembly highly congruent with the published sugar beet reference genome. Gross duplicate gene analyses of EL10.1 revealed little large-scale intra-genome duplication. Reduced gene copy number for well-annotated gene families relative to other core eudicots was observed, especially for transcription factors. Variation in genome size in B. vulgaris was investigated by flow cytometry among 50 individuals producing estimates from 633 to 875 Mb/1C. Read-depth mapping with short-read whole-genome sequences from other sugar beet germplasm suggested that relatively few regions of the sugar beet genome appeared associated with high-copy number variation.


Subject(s)
Beta vulgaris , Humans , Beta vulgaris/genetics , DNA Copy Number Variations , Chromosomes , Molecular Sequence Annotation , Sugars
3.
Nat Commun ; 13(1): 2021, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440134

ABSTRACT

Cultivated beets (Beta vulgaris ssp. vulgaris), including sugar beet, rank among the most important crops. The wild ancestor of beet crops is the sea beet Beta vulgaris ssp. maritima. Species and subspecies of wild beets are readily crossable with cultivated beets and are thus available for crop improvement. To study genomic relationships in the genus Beta, we sequence and analyse 606 beet genomes, encompassing sugar beet, sea beet, B. v. adanensis, B. macrocarpa, and B. patula. We observe two genetically distinct groups of sea beets, one from the Atlantic coast and the other from the Mediterranean area. Genomic comparisons based on k-mers identify sea beets from Greece as the closest wild relatives of sugar beet, suggesting that domestication of the ancestors of sugar beet may be traced to this area. Our work provides comprehensive insight into the phylogeny of wild and cultivated beets and establishes a framework for classification of further accessions of unknown (sub-)species assignment.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Crops, Agricultural/genetics , Genome, Plant/genetics , Genomics , Sugars
4.
Plant Dis ; 105(10): 3063-3071, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34702083

ABSTRACT

In many parts of the world including the Great Lakes region of North America, Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is a major foliar disease of sugar beet (Beta vulgaris). Management of CLS involves an integrated approach which includes the application of fungicides. To guide fungicide application timings, disease prediction models are widely used by sugar beet growers in North America. While these models have generally worked well, they have not included information about pathogen presence. Thus, incorporating spore production and dispersal could make them more effective. The current study used sentinel beets to assess the presence of C. beticola spores in the environment early in the 2017 and 2018 growing seasons. Weather variables including air temperature, relative humidity, rainfall, leaf wetness, wind speed, and solar radiation were collected. These data were used to identify environmental variables that correlated with spore levels during a time when CLS is not generally observed in commercial fields. C. beticola spores were detected during mid-April both years, which is much earlier than previously reported. A correlation was found between spore data and all the weather variables examined during at least one of the two years, except for air temperature. In both years, spore presence was significantly correlated with rainfall (P < 0.0001) as well as relative humidity (P < 0.0090). Rainfall was particularly intriguing, with an adjusted R2 of 0.3135 in 2017 and 0.1652 in 2018. Efforts are ongoing to investigate information on spore presence to improve prediction models and CLS management.


Subject(s)
Cercospora , Plant Diseases/microbiology , Spores, Fungal , Weather , Great Lakes Region , Seasons
5.
Front Plant Sci ; 12: 785267, 2021.
Article in English | MEDLINE | ID: mdl-35095959

ABSTRACT

Understanding the genetic basis of polygenic traits is a major challenge in agricultural species, especially in non-model systems. Select and sequence (SnS) experiments carried out within existing breeding programs provide a means to simultaneously identify the genomic background of a trait while improving the mean phenotype for a population. Using pooled whole genome sequencing (WGS) of selected and unselected bulks derived from a synthetic outcrossing sugar beet population EL57 (PI 663212), which segregates for seedling rhizoctonia resistance, we identified a putative genomic background involved in conditioning a resistance phenotype. Population genomic parameters were estimated to measure fixation (He), genome divergence (F ST ), and allele frequency changes between bulks (DeltaAF). We report on the genome wide patterns of variation resulting from selection and highlight specific genomic features associated with resistance. Expected heterozygosity (He) showed an increased level of fixation in the resistant bulk, indicating a greater selection pressure was applied. In total, 1,311 biallelic loci were detected as significant FST outliers (p < 0.01) in comparisons between the resistant and susceptible bulks. These loci were detected in 206 regions along the chromosomes and contained 275 genes. We estimated changes in allele frequency between bulks resulting from selection for resistance by leveraging the allele frequencies of an unselected bulk. DeltaAF was a more stringent test of selection and recovered 186 significant loci, representing 32 genes, all of which were also detected using FST. Estimates of population genetic parameters and statistical significance were visualized with respect to the EL10.2 physical map and produced a candidate gene list that was enriched for function in cell wall metabolism and plant disease resistance, including pathogen perception, signal transduction, and pathogen response. Specific variation associated with these genes was also reported and represents genetic markers for validation and prediction of resistance to Rhizoctonia. Select and sequence experiments offer a means to characterize the genetic base of sugar beet, inform selection within breeding programs, and prioritize candidate variation for functional studies.

6.
BMC Genomics ; 21(1): 189, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32122300

ABSTRACT

BACKGROUND: Diversification on the basis of utilization is a hallmark of Beta vulgaris (beet), as well as other crop species. Often, crop improvement and management activities are segregated by crop type, thus preserving unique genome diversity and organization. Full interfertility is typically retained in crosses between these groups and more traits may be accessible if the genetic basis of crop type lineage were known, along with available genetic markers to effect efficient transfer (e.g., via backcrossing). Beta vulgaris L. (2n =18) is a species complex composed of diverged lineages (e.g., crop types), including the familiar table, leaf (chard), fodder, and sugar beet crop types. Using population genetic and statistical methods with whole genome sequence data from pooled samples of 23 beet cultivars and breeding lines, relationships were determined between accessions based on identity-by-state metrics and shared genetic variation among lineages. RESULTS: Distribution of genetic variation within and between crop types showed extensive shared (e.g. non-unique) genetic variation. Lineage specific variation (e.g. apomorphy) within crop types supported a shared demographic history within each crop type, while principal components analysis revealed strong crop type differentiation. Relative contributions of specific chromosomes to genome wide differentiation were ascertained, with each chromosome revealing a different pattern of differentiation with respect to crop type. Inferred population size history for each crop type helped integrate selection history for each lineage, and highlighted potential genetic bottlenecks in the development of cultivated beet lineages. CONCLUSIONS: A complex evolutionary history of cultigroups in Beta vulgaris was demonstrated, involving lineage divergence as a result of selection and reproductive isolation. Clear delineation of crop types was obfuscated by historical gene flow and common ancestry (e.g. admixture and introgression, and sorting of ancestral polymorphism) which served to share genome variation between crop types and, likely, important phenotypic characters. Table beet was well differentiated as a crop type, and shared more genetic variation within than among crop types. The sugar beet group was not quite as well differentiated as the table beet group. Fodder and chard groups were intermediate between table and sugar groups, perhaps the result of less intensive selection for end use.


Subject(s)
Beta vulgaris/growth & development , Crops, Agricultural/growth & development , Genetic Variation , Whole Genome Sequencing/methods , Beta vulgaris/genetics , Crops, Agricultural/genetics , Evolution, Molecular , Genome, Plant , Linkage Disequilibrium , Metagenomics , Plant Breeding , Population Density , Quantitative Trait Loci
7.
Plant J ; 2018 May 23.
Article in English | MEDLINE | ID: mdl-29797366

ABSTRACT

Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as a model, 231 tentative NB-ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-length sequences. The NB-ARC-associated proteins contained NLR resistance gene domains, including TIR, CC and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB-ARC domains to validated R-genes from monocots and eudicots suggested extensive Beta vulgaris-specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR-like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic-acid-based method for NLR prediction in non-model plant species.

8.
Plant Methods ; 14: 28, 2018.
Article in English | MEDLINE | ID: mdl-29610576

ABSTRACT

BACKGROUND: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved to increase genotyping efficiency. A new assay, rhAmp, based on RNase H2-dependent PCR (rhPCR) combined with a universal reporter system attempts to reduce error rates from primer/primer and primer/probe dimers while lowering costs compared to existing technologies. Before rhAmp can be widely adopted, more experimentation is required to validate its effectiveness versus established methods. RESULTS: The aim of this study was to compare the accuracy, sensitivity and costs of TaqMan, KASP, and rhAmp SNP genotyping methods in sugar beet (Beta vulgaris L.). For each approach, assays were designed to genotype 33 SNPs in a set of 96 sugar beet individuals obtained from 12 parental lines. The assay sensitivity was tested using a series of dilutions from 100 to 0.1 ng per PCR reaction. PCR was carried out on the QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific, USA). The call-rate, defined as the percentage of genotype calls relative to the possible number of calls, was 97.0, 97.6, and 98.1% for TaqMan, KASP, and rhAmp, respectively. For rhAmp SNP, 24 of the 33 SNPs demonstrated 100% concordance with other two technologies. The genotype concordance with either technologies for the other 9 targets was above 99% (99.34-99.89%). CONCLUSION: The sensitivity test demonstrated that TaqMan and rhAmp were able to successfully determine SNP genotypes using as little as 0.2 ng DNA per reaction, while the KASP was unable to ascertain SNP states below 0.9 ng of DNA per reaction. Comparative cost per reaction was also analyzed with rhAmp SNP offering the lowest cost per reaction. In conclusion, rhAmp produced more calls than either TaqMan or KASP, higher signal to NTC data while offering the lowest cost per reaction.

9.
Food Chem ; 167: 264-71, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25148988

ABSTRACT

Visible and near-infrared spectra in interactance mode were acquired for intact and sliced beet samples, using two portable spectrometers for the spectral regions of 400-1100 nm and 900-1600 nm, respectively. Sucrose prediction models for intact and sliced beets were developed and then validated. The spectrometer for 400-1100 nm was able to predict the sucrose content with correlations of prediction (rp) of 0.80 and 0.88 and standard errors of prediction (SEPs) of 0.89% and 0.70%, for intact beets and beet slices, respectively. The spectrometer for 900-1600 nm had rp values of 0.74 and 0.88 and SEPs of 1.02% and 0.69% for intact beets and beet slices. These results showed the feasibility of using the portable spectrometer to predict the sucrose content of beet slices. Using simple correlation analysis, the study also identified important wavelengths that had strong correlation with the sucrose content.


Subject(s)
Beta vulgaris/chemistry , Spectroscopy, Near-Infrared/methods , Sucrose/analysis
10.
Nat Genet ; 47(1): 92-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25436858

ABSTRACT

Nearly all flowering plants produce red/violet anthocyanin pigments. Caryophyllales is the only order containing families that replace anthocyanins with unrelated red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betalains might be regulated by a conserved anthocyanin-regulating transcription factor complex consisting of a MYB, a bHLH and a WD repeat-containing protein (the MBW complex). Here we show that a previously uncharacterized anthocyanin MYB-like protein, Beta vulgaris MYB1 (BvMYB1), regulates the betalain pathway in beets. Silencing BvMYB1 downregulates betalain biosynthetic genes and pigmentation, and overexpressing BvMYB1 upregulates them. However, unlike anthocyanin MYBs, BvMYB1 will not interact with bHLH members of heterologous anthocyanin MBW complexes because of identified nonconserved residues. BvMYB1 resides at the historic beet pigment-patterning locus, Y, required for red-fleshed beets. We show that Y and y express different levels of BvMYB1 transcripts. The co-option of a transcription factor regulating anthocyanin biosynthesis would be an important evolutionary event allowing betalains to largely functionally replace anthocyanins.


Subject(s)
Beta vulgaris/genetics , Betalains/biosynthesis , Gene Expression Regulation, Plant/genetics , Genes, Plant , Pigmentation/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Agrobacterium/genetics , Amino Acid Sequence , Anthocyanins/biosynthesis , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Beta vulgaris/growth & development , Beta vulgaris/metabolism , Gene Silencing , Molecular Sequence Data , Multiprotein Complexes , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Structure, Tertiary , RNA, Messenger/biosynthesis , RNA, Plant/biosynthesis , Sequence Alignment , Sequence Homology , Transcription Factors/metabolism , Transcription, Genetic , Transformation, Genetic
11.
Nat Genet ; 44(7): 816-20, 2012 Jun 03.
Article in English | MEDLINE | ID: mdl-22660548

ABSTRACT

Anthocyanins are red and violet pigments that color flowers, fruits and epidermal tissues in virtually all flowering plants. A single order, Caryophyllales, contains families in which an unrelated family of pigments, the betalains, color tissues normally pigmented by anthocyanins. Here we show that CYP76AD1 encoding a novel cytochrome P450 is required to produce the red betacyanin pigments in beets. Gene silencing of CYP76AD1 results in loss of red pigment and production of only yellow betaxanthin pigment. Yellow betalain mutants are complemented by transgenic expression of CYP76AD1, and an insertion in CYP76AD1 maps to the R locus that is responsible for yellow versus red pigmentation. Finally, expression of CYP76AD1 in yeast verifies its position in the betalain biosynthetic pathway. Thus, this cytochrome P450 performs the biosynthetic step that provides the cyclo-DOPA moiety of all red betacyanins. This discovery will contribute to our ability to engineer this simple, nutritionally valuable pathway into heterologous species.


Subject(s)
Anthocyanins/genetics , Beta vulgaris/genetics , Betalains/metabolism , Cytochrome P-450 Enzyme System/genetics , Genes, Plant , Genetic Loci , Pigments, Biological/genetics , Amino Acid Sequence , Anthocyanins/metabolism , Beta vulgaris/enzymology , Beta vulgaris/metabolism , Color , Cytochrome P-450 Enzyme System/metabolism , Flowers/genetics , Flowers/metabolism , Isoenzymes , Molecular Sequence Data , Pigments, Biological/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Alignment , Yeasts/genetics
12.
Physiol Plant ; 135(1): 84-97, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19121102

ABSTRACT

Developmental phase transitions in the plant root system have not been well characterized. In this study we compared the dynamics of sucrose accumulation with changes in gene expression analyzed with cDNA-amplified fragment length polymorphism (AFLP) in the developing tap root of sugar beet (Beta vulgaris, L.) during the first 9 weeks after emergence (WAE). Although differences between lines were evident as soon as 9 WAE, sucrose showed a marked increase in the rate of accumulation between 4 and 6 WAE and a remarkable shift in gene expression was observed between 5 and 6 WAE. These changes were evident in two unrelated genetic backgrounds and suggest that physiological and gene expression changes represent a functional differentiation of the tap root. These changes were considered as indicators of a developmental change in the sugar beet root system. To identify genes and metabolic pathways involved in this developmental shift, a root cDNA library was hybridized with probes enriched for 3- and 7-WAE transcripts and differentially expressed transcripts were analyzed by cDNA microarray. Several genes involved in the regulation of tissue development were found to be differentially regulated. Genes involved in protein metabolism, disease-related and secretory system were upregulated before the functional differentiation transition, while genes under hormonal control were upregulated after the functional differentiation transition. This developmental phase change of the root system is important to understand plant developmental regulation at the whole-plant level and will likely be useful as early selection parameter in breeding programs.


Subject(s)
Beta vulgaris/growth & development , Gene Expression Regulation, Plant , Plant Roots/growth & development , Amplified Fragment Length Polymorphism Analysis , Beta vulgaris/genetics , Beta vulgaris/metabolism , Cluster Analysis , DNA, Complementary/genetics , DNA, Plant/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Library , Genotype , Oligonucleotide Array Sequence Analysis , Plant Roots/genetics , Plant Roots/metabolism , Sucrose/metabolism
13.
Transgenic Res ; 17(2): 205-17, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17415670

ABSTRACT

Vitamin E (tocopherol) is a powerful antioxidant essential for human health and synthesized only by photosynthetic organisms. The effects of over-expression of tocopherol biosynthetic enzymes have been studied in leaves and seeds, but not in a non-photosynthetic, below-ground plant organ. Genetic and molecular approaches were used to determine if increased levels of tocopherols can be accumulated in potato (Solanum tuberosum L.) tubers through metabolic engineering. Two transgenes were constitutively over-expressed in potato: Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase (At-HPPD) and A. thaliana homogentisate phytyltransferase (At-HPT). alpha-Tocopherol levels in the transgenic plants were determined by high-performance liquid chromatography. In potato tubers, over-expression of At-HPPD resulted in a maximum 266% increase in alpha-tocopherol, and over-expression of At-HPT yielded a 106% increase. However, tubers from transgenic plants still accumulated approximately 10- and 100-fold less alpha-tocopherol than leaves or seeds, respectively. The results indicate that physiological and regulatory constraints may be the most limiting factors for tocopherol accumulation in potato tubers. Studying regulation and induction of tocopherol biosynthesis should reveal approaches to more effectively engineer crops with enhanced tocopherol content.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/genetics , Alkyl and Aryl Transferases/genetics , Arabidopsis/enzymology , Gene Expression Regulation, Plant/physiology , Plants, Genetically Modified/metabolism , Solanum tuberosum/metabolism , Vitamin E/biosynthesis , Blotting, Southern , Chromatography, High Pressure Liquid , DNA Primers , Genes, Plant , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Tubers/metabolism , Plants, Genetically Modified/genetics , Plasmids , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seeds/chemistry , Seeds/enzymology , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Transgenes/physiology
14.
J Plant Physiol ; 163(1): 102-6, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16360809

ABSTRACT

A full-length sucrose synthase (SBSS2) cDNA clone was isolated from sugarbeet. Comparison of its composition and organ-specific and developmental expression with a previously isolated sugarbeet sucrose synthase gene (SBSS1) revealed distinct differences between the two genes. The two genes share 80% similarity in deduced amino acid sequence but belong to different sucrose synthase subclasses based on phylogenic analysis. Both sucrose synthases were highly expressed in roots, and had low levels of expression in leaf tissue. Transcript abundance of SBSS2, relative to SBSS1, was greater in young vegetative and floral tissues, and reduced in mature vegetative tissues. The organ-specific and developmental expression of SBSS1 and SBSS2 proteins was similar to SBSS1 and SBSS2 transcript levels, although developmental changes in protein abundance lagged transcriptional changes by many weeks. The similarities and differences in transcript and protein abundance suggest that both transcriptional and post-transcriptional regulatory mechanisms are likely to contribute to sucrose synthase expression in sugarbeet.


Subject(s)
Beta vulgaris/enzymology , Glucosyltransferases/genetics , Base Sequence , Beta vulgaris/genetics , Beta vulgaris/growth & development , Cloning, Molecular , Flowers/metabolism , Gene Expression , Glucosyltransferases/metabolism , Molecular Sequence Data , Phylogeny , Plant Leaves/metabolism , Plant Roots/metabolism
15.
J Agric Food Chem ; 52(23): 6862-7, 2004 Nov 17.
Article in English | MEDLINE | ID: mdl-15537287

ABSTRACT

Sucrose is the economic product from sugar beet. Disease resistance is often available in low-sucrose genotypes and, prior to the deployment of such novel genes as available into the cultivated spectrum, selection for increased sucrose content is required during introgression. The objective of this work was to evaluate a relatively rapid and inexpensive enzymatic-fluorometric microtiter plate assay for sucrose quantification in sugar beet root dry matter, both for progeny testing in the greenhouse and for evaluation of field-grown mother roots. As determined using HPLC, sucrose content in diverse populations of sugar and table beet assayed over various developmental stages ranged from 0.213 to 2.416 mmol g(-1) of dry matter, and these values were used as references for both refractometry and enzymatic-fluorometric assay. As expected, refractometric analysis generally overestimated sucrose content. Enzymatic-fluorometric analyses were reasonably well correlated with HPLC results for young greenhouse-grown root tissues (R2 = 0.976), and less so with older field-grown roots (R2 = 0.605), for unknown reasons. Enzymatic-fluorometric assays may be best deployed for progeny testing of young seedlings.


Subject(s)
Beta vulgaris/chemistry , Fluorometry/methods , Sucrose/analysis , Beta vulgaris/growth & development , Chromatography, High Pressure Liquid , Plant Roots/chemistry
16.
Theor Appl Genet ; 107(1): 54-61, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12835933

ABSTRACT

For genetic screening and breeding purposes, an in vitro germination system that reflects relative field emergence potential was used to screen for germination-enhancing and stress-induced genes from germinating seedlings from two varieties of sugar beet. Three full-length germin-like protein (GLP) gene classes were recovered from stress-germinated seedlings of a superior emerging variety. GLP gene expression, oxalate oxidase protein activity, the H(2)O(2) content of stressed seedlings, but not catalase activity, were induced by stress germination conditions (e.g. excess water, NaCl, mannitol, or oxalate) in a good emerging hybrid and were not induced in a poor emerging variety. Only one of the three germin-like protein genes ( BvGer165) was differentially regulated, and was induced only in the good emerger. Hydrogen peroxide promoted germination and partially compensated solute-depressed germination percentages. Unlike other solute recovery by hydrogen peroxide regimes, recovery in oxalic acid plus H(2)O(2) was cultivar-independent. A block in oxalate metabolism is postulated to contribute to lower germination under stress in the lower emerging variety. Selection for stress-induced germin expression, or for down-stream targets, presents the first direct target to enable breeding for improved field emergence of sugar beet.


Subject(s)
Beta vulgaris/enzymology , Genes, Plant , Glycoproteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Seedlings/genetics , Beta vulgaris/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Germination , Hydrogen Peroxide/metabolism , Mannitol/metabolism , Oxalic Acid/metabolism , Oxidoreductases/genetics , Sodium Chloride/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...