Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 12: 728396, 2021.
Article in English | MEDLINE | ID: mdl-34456879

ABSTRACT

Background: There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. Methods: Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. Results: Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). Conclusions: While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. Systematic Review Registration: Website: PROSPERO Identified: CRD42021227619.


Subject(s)
Helminthiasis/epidemiology , Metabolic Syndrome/epidemiology , Animals , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Helminthiasis/complications , Helminths , Humans , Incidence , Metabolic Syndrome/etiology , Prevalence , Risk Factors
2.
Basic Clin Pharmacol Toxicol ; 110(3): 238-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21902812

ABSTRACT

The aim of this study was to investigate whether treatment with a ginger (Zingiber officinale) extract of high-fat diet (HFD)-fed rats suppresses Nuclear factor-kappa B (NF-κB)-driven hepatic inflammation and to subsequently explore the molecular mechanisms in vitro. Adult male Sprague-Dawley rats were treated with an ethanolic extract of Zingiber officinale (400 mg/kg) along with a HFD for 6 weeks. Hepatic cytokine mRNA levels, cytokine protein levels and NF-κB activation were measured by real-time PCR, Western blot and an NF-κB nuclear translocation assay, respectively. In vitro, cell culture studies were carried out in human hepatocyte (HuH-7) cells by treatment with Zingiber officinale (100 µg/mL) for 24 hr prior to interleukin-1ß (IL-1ß, 8 ng/mL)-induced inflammation. We showed that Zingiber officinale treatment decreased cytokine gene TNFα and IL-6 expression in HFD-fed rats, which was associated with suppression of NF-κB activation. In vitro, Zingiber officinale treatment decreased NF-κB-target inflammatory gene expression of IL-6, IL-8 and serum amyloid A1 (SAA1), while it suppressed NF-κB activity, IκBα degradation and IκB kinase (IKK) activity. In conclusion, Zingiber officinale suppressed markers of hepatic inflammation in HFD-fed rats, as demonstrated by decreased hepatic cytokine gene expression and decreased NF-κB activation. The study demonstrates that the anti-inflammatory effect of Zingiber officinale occurs at least in part through the NF-κB signalling pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Plant Extracts/pharmacology , Zingiber officinale/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Cells, Cultured , Cytokines/metabolism , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inflammation/physiopathology , Liver/drug effects , Liver/physiopathology , Male , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Polymerase Chain Reaction , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
3.
Horm Mol Biol Clin Investig ; 2(1): 203-9, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-25961193

ABSTRACT

BACKGROUND: Anecdotal evidence suggests that male sex hormones are proatherogenic. We hypothesized that the male sex hormone receptor, the androgen receptor (AR), acts as a molecular switch in sex-specific inflammatory signaling in vascular cells. MATERIALS AND METHODS: AR expression in human umbilical vein endothelial cells (HUVECs), human monocyte-derived macrophages (MDMs) or HeLa cells was modulated by transfection with AR siRNA or human AR cDNA expression vector. Activity and expression levels were measured by luciferase reporter assays, Western blotting or real-time PCR analysis. RESULTS: AR knockdown reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in genetically male HUVECs. Conversely, AR upregulation in genetically female HUVECs induced VCAM-1 expression and increased dihydrotestosterone-stimulated monocyte adhesion. Co-transfection of an AR expression vector with VCAM-1 or NF-κB-reporter vectors into phenotypically female, AR-negative HeLa cells confirmed AR regulation of VCAM-1 expression as well as AR activation of NF-κB. AR upregulation was not sufficient to increase ICAM-1 levels in female HUVECs or lipoprotein metabolism gene expression in female MDMs, despite AR knockdown limiting expression in their male counterparts. CONCLUSIONS: AR acts as a molecular switch to induce VCAM-1 expression. Low AR levels in female HUVECs limit NF-κB/VCAM-1 induction and monocyte adhesion and could contribute to the gender bias in cardiovascular disease. Unidentified factors in female cells limit induction of other proatherogenic genes not primarily regulated by NF-κB.

SELECTION OF CITATIONS
SEARCH DETAIL
...