Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Optoelectron ; 16(1): 46, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095740

ABSTRACT

White organic light-emitting diodes (WOLEDs) have several desirable features, but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device structures. Herein, we investigate a standard blue emitting hole transporting material (HTM) N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) and its exciplex emission upon combining with a suitable electron transporting material (ETM), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ). Blue and yellow OLEDs with simple device structures are developed by using a blend layer, NPB:TAZ, as a blue emitter as well as a host for yellow phosphorescent dopant iridium (III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate (PO-01). Strategic device design then exploits the ambipolar charge transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units. The tetracene-linked device demonstrates more promising results compared to those using a conventional charge generation layer (CGL). Judicious choice of the spacer prevents exciton diffusion from the blue emitter unit, yet facilitates charge carrier transport to the yellow emitter unit to enable additional exciplex formation. This complementary behavior of the spacer improves the blue emission properties concomitantly yielding reasonable yellow emission. The overall white light emission properties are enhanced, achieving CIE coordinates (0.36, 0.39) and color temperature (4643 K) similar to daylight. Employing intermolecular exciplex emission in OLEDs simplifies the device architecture via its dual functionality as a host and as an emitter.

2.
Nat Commun ; 14(1): 7220, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940640

ABSTRACT

This work demonstrates successful large area inkjet printing of a thermally activated delayed fluorescence (TADF) material as the emitting layer of organic light-emitting diodes (OLEDs). TADF materials enable efficient light emission without relying on heavy metals such as platinum or iridium. However, low-cost manufacturing of large-scale TADF OLEDs has been restricted due to their incompatibility with solution processing techniques. In this study, we develop ink formulation for a TADF material and show successful ink jet printing of intricate patterns over a large area (6400 mm2) without the use of any lithography. The stable ink is successfully achieved using a non-chlorinated binary solvent mixture for a solution processable TADF material, 3-(9,9-dimethylacridin-10(9H)-yl)-9H-xanthen-9-one dispersed in 4,4'-bis-(N-carbazolyl)-1,1'-biphenyl host. Using this ink, large area ink jet printed OLEDs with performance comparable to the control spin coated OLEDs are successfully achieved. In this work, we also show the impact of ink viscosity, density, and surface tension on the droplet formation and film quality as well as its potential for large-area roll-to-roll printing on a flexible substrate. The results represent a major step towards the use of TADF materials for large-area OLEDs without employing any lithography.

3.
Macromol Rapid Commun ; 43(16): e2200118, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35355352

ABSTRACT

Hyperfluorescent organic light-emitting diodes (HF-OLEDs) enable a cascading Förster resonance energy transfer (FRET) from a suitable thermally activated delayed fluorescent (TADF) assistant host to a fluorescent end-emitter to give efficient OLEDs with relatively narrowed electroluminescence compared to TADF-OLEDs. Efficient HF-OLEDs require optimal FRET with minimum triplet diffusion via Dexter-type energy transfer (DET) from the TADF assistant host to the fluorescent end-emitter. To hinder DET, steric protection of the end-emitters has been proposed to disrupt triplet energy transfer. In this work, the first HF-OLEDs based on structurally well-defined macromolecules, dendrimers is reported. The dendrimers contain new highly twisted dendrons attached to a Cibalackrot core, resulting in high solubility in organic solvents. HF-OLEDs based on dendrimer blend films are fabricated to show external quantum efficiencies of >10% at 100 cd m-2 . Importantly, dendronization with the bulky dendrons is found to have no negative impact to the FRET efficiency, indicating the excellent potential of the dendritic macromolecular motifs for HF-OLEDs. To fully prevent the undesired triplet diffusion, Cibalackrot dendrimers HF-OLEDs are expected to be further improved by adding additional dendrons to the Cibalackrot core and/or increasing dendrimer generations.


Subject(s)
Dendrimers , Coloring Agents , Fluorescence Resonance Energy Transfer
4.
Macromol Rapid Commun ; 43(16): e2200115, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35338553

ABSTRACT

External quantum efficiency (EQE) roll-off under high current injection has been one of the major limiting factors toward the development of organic semiconductor laser diodes (OSLDs). While significant progress in this regard has been made on organic semiconductors (OSCs) emitting in the blue-green region of the visible spectrum, OSCs with longer wavelength emission (>600 nm) have fallen behind in both material development and the advancement in device architectures suitable for the realization of OSLDs. Therefore, to make simultaneous incremental advancements, a host-guest system comprising of a high performing poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) polymer and an efficient small molecule laser dye, dithiophenyl diketopyrrolopyrrole (DT-DPP), is used. This combination provides an extremely low amplified spontaneous emission threshold of 4.2 µJ cm-2 at an emission wavelength of 620 nm. The solution-processed organic light-emitting diodes (OLEDs) fabricated using this system exhibit a high external quantum efficiency (EQE) of 2.6% with low efficiency roll-off and high current injection up to 90 A cm-2 to yield ultrahigh luminance of over 1.5 million cd m-2 .

5.
Nat Commun ; 13(1): 254, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017481

ABSTRACT

Polaron-induced exciton quenching in thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) can lead to external quantum efficiency (EQE) roll-off and device degradation. In this study, singlet-polaron annihilation (SPA) and triplet-polaron annihilation (TPA) were investigated under steady-state conditions and their relative contributions to EQE roll-off were quantified, using experimentally obtained parameters. It is observed that both TPA and SPA can lead to efficiency roll-off in 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) doped OLEDs. Charge imbalance and singlet-triplet annihilation (STA) were found to be the main contributing factors, whereas the device degradation process is mainly dominated by TPA. It is also shown that the impact of electric field-induced exciton dissociation is negligible under the DC operation regime (electric field < 0.5 MV cm-1). Through theoretical simulation, it is demonstrated that improvement to the charge recombination rate may reduce the effect of polaron-induced quenching, and thus significantly decrease the EQE roll-off.

6.
Chemistry ; 27(25): 7265-7274, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33527569

ABSTRACT

N-Heterocyclic carbene (NHC) cyclometalated gold(III) complexes remain very scarce and therefore their photophysical properties remain currently underexplored. Moreover, gold(III) complexes emitting in the blue region of the electromagnetic spectrum are rare. In this work, a series of four phosphorescent gold(III) complexes was investigated bearing four different NHC monocyclometalated (C^C*)-type ligands and a dianionic (N^N)-type ancillary ligand ((N^N)=5,5'-(propane-2,2-diyl)bis(3-(trifluoromethyl)-1 H-pyrazole) (mepzH2 )). The complexes exhibit strong phosphorescence when doped in poly(methyl methacrylate) (PMMA) at room temperature, which were systematically tuned from sky-blue [λPL =456 nm, CIE coordinates: (0.20, 034)] to green [λPL =516 nm, CIE coordinates: (0.31, 0.54)] by varying the monocyclometalated (C^C*) ligand framework. The complexes revealed high quantum efficiencies (ϕPL ) of up to 43 % and excited-state lifetimes (τ0 ) between 15-266 µs. The radiative rate constant values found for these complexes (kr =103 -104  s-1 ) are the highest found in comparison to previously known best-performing monocyclometalated gold(III) complexes. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these complexes further lend support to the excited-state nature of these complexes. The calculations showed a significant contribution of the gold(III) metal center in the lowest unoccupied molecular orbitals (LUMOs) of up to 18 %, which was found to be unique for this class of cyclometalated gold(III) complexes. Additionally, organic light-emitting diodes (OLEDs) were fabricated by using a solution process to provide the first insight into the electroluminescent (EL) properties of this new class of gold(III) complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...