Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 240: 106517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555985

ABSTRACT

Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.


Subject(s)
Breast Neoplasms , Receptors, Estrogen , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Tumor Microenvironment/immunology , Female , Receptors, Estrogen/metabolism , Signal Transduction , Animals , Macrophages/immunology , Macrophages/metabolism , Estrogens/metabolism
2.
Trends Immunol ; 44(12): 971-985, 2023 12.
Article in English | MEDLINE | ID: mdl-37995659

ABSTRACT

Macrophages represent a key component of the tumor microenvironment (TME) and are largely associated with poor prognosis. Therapeutic targeting of macrophages has historically focused on inhibiting their recruitment or reprogramming their phenotype from a protumor (M2-like) to an antitumor (M1-like) one. Unfortunately, this approach has not provided clinical breakthroughs that have changed practice. Emerging studies utilizing single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics have improved our understanding of the ontogeny, phenotype, and functional plasticity of macrophages. Overlaying the wealth of current information regarding macrophage molecular subtypes and functions has also identified novel therapeutic vulnerabilities that might drive better control of tumor-associated macrophages (TAMs). Here, we discuss the functional profiling of macrophages and provide an update of novel macrophage-targeted therapies in development.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/pathology , Macrophages/pathology , Phenotype , Tumor Microenvironment
3.
Cancer Med ; 12(23): 21545-21560, 2023 12.
Article in English | MEDLINE | ID: mdl-37974533

ABSTRACT

BACKGROUND: Genome-wide measures of genetic disruption such as tumour mutation burden (TMB) and mutation signatures are emerging as useful biomarkers to stratify patients for treatment. Clinicians commonly use cancer gene panels for tumour mutation burden estimation, and whole genome sequencing is the gold standard for mutation signature analysis. However, the accuracy and cost associated with these assays limits their utility at scale. METHODS: WGS data from 560 breast cancer patients was used for in silico library simulations to evaluate the accuracy of an FDA approved cancer gene panel as well as restriction enzyme associated DNA sequencing (RADseq) libraries for TMB estimation and mutation signature analysis. We also transfected a mouse mammary cell line with APOBEC enzymes and sequenced resulting clones to evaluate the efficacy of RADseq in an experimental setting. RESULTS: RADseq had improved accuracy of TMB estimation and derivation of mutation profiles when compared to the FDA approved cancer panel. Using simulated immune checkpoint blockade (ICB) trials, we show that inaccurate TMB estimation leads to a reduction in power for deriving an optimal TMB cutoff to stratify patients for immune checkpoint blockade treatment. Additionally, prioritisation of APOBEC hypermutated tumours in these trials optimises TMB cutoff determination for breast cancer. The utility of RADseq in an experimental setting was also demonstrated, based on characterisation of an APOBEC mutation signature in an APOBEC3A transfected mouse cell line. CONCLUSION: In conclusion, our work demonstrates that RADseq has the potential to be used as a cost-effective, accurate solution for TMB estimation and mutation signature analysis by both clinicians and basic researchers.


Subject(s)
Breast Neoplasms , Immune Checkpoint Inhibitors , Animals , Mice , Humans , Female , Mutation , Sequence Analysis, DNA , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...