Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 8140, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581326

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/metabolism , Drosophila/metabolism , Endoplasmic Reticulum Chaperone BiP , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones
2.
Hum Mol Genet ; 30(19): 1797-1810, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34077532

ABSTRACT

Spinocerebellar ataxia type 2 is a polyglutamine (polyQ) disease associated with an expanded polyQ domain within the protein product of the ATXN2 gene. Interestingly, polyQ repeat expansions in ATXN2 are also associated with amyotrophic lateral sclerosis (ALS) and parkinsonism depending upon the length of the polyQ repeat expansion. The sequence encoding the polyQ repeat also varies with disease presentation: a pure CAG repeat is associated with SCA2, whereas the CAG repeat in ALS and parkinsonism is typically interrupted with the glutamine encoding CAA codon. Here, we asked if the purity of the CAG sequence encoding the polyQ repeat in ATXN2 could impact the toxicity of the ataxin-2 protein in vivo in Drosophila. We found that ataxin-2 encoded by a pure CAG repeat conferred toxicity in the retina and nervous system, whereas ataxin-2 encoded by a CAA-interrupted repeat or CAA-only repeat failed to confer toxicity, despite expression of the protein at similar levels. Furthermore, the CAG-encoded ataxin-2 protein aggregated in the fly eye, while ataxin-2 encoded by either a CAA/G or CAA repeat remained diffuse. The toxicity of the CAG-encoded ataxin-2 protein was also sensitive to the translation factor eIF4H, a known modifier of the toxic GGGGCC repeat in flies. These data indicate that ataxin-2 encoded by a pure CAG versus interrupted CAA/G polyQ repeat domain is associated with differential toxicity, indicating that mechanisms associated with the purity of the sequence of the polyQ domain contribute to disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Spinocerebellar Ataxias , Amyotrophic Lateral Sclerosis/genetics , Animals , Ataxin-2/genetics , Ataxin-3/genetics , Ataxins/genetics , Drosophila/genetics , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics
3.
J Neurosci ; 41(5): 834-844, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33472825

ABSTRACT

Molecules within cells are segregated into functional domains to form various organelles. While some of those organelles are delimited by lipid membranes demarcating their constituents, others lack a membrane enclosure. Recently, liquid-liquid phase separation (LLPS) revolutionized our view of how segregation of macromolecules can produce membraneless organelles. While the concept of LLPS has been well studied in the areas of soft matter physics and polymer chemistry, its significance has only recently been recognized in the field of biology. It occurs typically between macromolecules that have multivalent interactions. Interestingly, these features are present in many molecules that exert key functions within neurons. In this review, we cover recent topics of LLPS in different contexts of neuronal physiology and pathology.


Subject(s)
Liquid-Liquid Extraction/methods , Nervous System Diseases/physiopathology , Neurons/physiology , Organelles/physiology , Animals , Humans
4.
J Cell Sci ; 133(12)2020 06 23.
Article in English | MEDLINE | ID: mdl-32409565

ABSTRACT

In >95% of cases of amyotrophic lateral sclerosis (ALS) and ∼45% of frontotemporal degeneration (FTD), the RNA/DNA-binding protein TDP-43 is cleared from the nucleus and abnormally accumulates in the cytoplasm of affected brain cells. Although the cellular triggers of disease pathology remain enigmatic, mounting evidence implicates the poly(ADP-ribose) polymerases (PARPs) in TDP-43 neurotoxicity. Here we show that inhibition of the PARP enzymes tankyrase 1 and tankyrase 2 (referred to as Tnks-1/2) protect primary rodent neurons from TDP-43-associated neurotoxicity. We demonstrate that Tnks-1/2 interacts with TDP-43 via a newly defined tankyrase-binding domain. Upon investigating the functional effect, we find that interaction with Tnks-1/2 inhibits the ubiquitination and proteasomal turnover of TDP-43, leading to its stabilization. We further show that proteasomal turnover of TDP-43 occurs preferentially in the nucleus; our data indicate that Tnks-1/2 stabilizes TDP-43 by promoting cytoplasmic accumulation, which sequesters the protein from nuclear proteasome degradation. Thus, Tnks-1/2 activity modulates TDP-43 and is a potential therapeutic target in diseases associated with TDP-43, such as ALS and FTD.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Amyotrophic Lateral Sclerosis , Tankyrases , Amyotrophic Lateral Sclerosis/genetics , Cell Nucleus , Cytoplasm , DNA-Binding Proteins/genetics , Humans , Tankyrases/genetics
5.
Nat Commun ; 11(1): 1580, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221286

ABSTRACT

ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.


Subject(s)
Adenosine Deaminase/genetics , Brain/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Immunity, Innate/genetics , RNA Editing/genetics , Adenosine Deaminase/chemistry , Adenosine Monophosphate/metabolism , Aging/pathology , Animals , Catalysis , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Gene Expression Regulation , Locomotion , Nerve Degeneration/pathology , Point Mutation/genetics , Protein Domains , RNA Helicases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonuclease III/metabolism
6.
BMC Biol ; 18(1): 15, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32059717

ABSTRACT

BACKGROUND: In fly brains, the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all editing events are absent or less efficient in larvae but increase at metamorphosis; the larger number and higher levels of editing suggest editing is most required when the brain is most complex. This idea is consistent with the fact that Adar mutations affect the adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA editing events mediate some coherent physiological effect. To address this question, we performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant flies are partially viable, severely locomotion defective, aberrantly accumulate axonal neurotransmitter pre-synaptic vesicles and associated proteins, and develop an age-dependent vacuolar brain neurodegeneration. RESULTS: A genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 phenotypes by reduced Tor is due to increased autophagy; overexpression of Atg5, which increases canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy (eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes tested. CONCLUSIONS: These findings link Drosophila Adar mutant synaptic and neurotransmission defects to more general cellular defects in autophagy; presumably, edited isoforms of CNS proteins are required for optimum synaptic response capabilities in the brain during the behaviorally complex adult life stage.


Subject(s)
Adenosine Deaminase/genetics , Autophagy , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Synaptic Transmission/genetics , Adenosine Deaminase/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Larva/genetics , Larva/growth & development , Larva/physiology , Male , Mutation
7.
Trends Genet ; 35(8): 601-613, 2019 08.
Article in English | MEDLINE | ID: mdl-31182245

ABSTRACT

A central and causative feature of age-related neurodegenerative disease is the deposition of misfolded proteins in the brain. To devise novel approaches to treatment, regulatory pathways that modulate these aggregation-prone proteins must be defined. One such pathway is post-translational modification by the addition of poly(ADP-ribose) (PAR), which promotes protein recruitment and localization in several cellular contexts. Mounting evidence implicates PAR in seeding the abnormal localization and accumulation of proteins that are causative of neurodegenerative disease. Inhibitors of PAR polymerase (PARP) activity have been developed as cancer therapeutics, raising the possibility that they could be used to treat neurodegenerative disease. We focus on pathways regulated by PAR in neurodegenerative disease, with emphasis on amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD).


Subject(s)
ADP-Ribosylation/drug effects , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Lobar Degeneration/genetics , Neurodegenerative Diseases/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Aging , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/pathology , Cells, Cultured , Drosophila , Frontotemporal Lobar Degeneration/pathology , Humans , Neurodegenerative Diseases/pathology , Neurons/pathology , Poly Adenosine Diphosphate Ribose/metabolism , Protein Aggregation, Pathological , Protein Processing, Post-Translational
8.
Biochemistry ; 57(51): 6923-6926, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30540446

ABSTRACT

TAR DNA-binding protein of 43 kDa (TDP-43) forms granulo-filamentous aggregates in affected brain regions of >95% of patients with ALS and ∼50% of patients with frontotemporal degeneration (FTD). Furthermore, in disease, TDP-43 becomes N-terminally truncated resulting in protein deposits that are mainly composed of the C-terminal prion-like domain (PrLD). The PrLD is inherently aggregation-prone and is hypothesized to drive protein aggregation of TDP-43 in disease. Here, we establish that the N-terminal region of the protein is critical for rapid TDP-43 granulo-filamentous aggregation. We show that the biopolymer poly(ADP-ribose), or PAR, inhibits granulo-filamentous aggregation of TDP-43 by engaging PAR-binding motifs (PBMs) embedded in the TDP-43 nuclear-localization sequence. We demonstrate that progressive N-terminal truncation of TDP-43 can decelerate aggregation kinetics and promote formation of thread-like filaments. Thus, the N-terminal region and the PBMs of TDP-43 promote rapid granulo-filamentous aggregation and antagonize formation of thread-like fibrils. These findings illustrate the complexity of TDP-43 aggregation trajectories.


Subject(s)
DNA-Binding Proteins/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Humans , In Vitro Techniques , Kinetics , Nuclear Localization Signals/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Poly Adenosine Diphosphate Ribose/pharmacology , Protein Aggregates/drug effects , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/prevention & control , Protein Domains
9.
Mol Cell ; 71(5): 703-717.e9, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100264

ABSTRACT

In amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), cytoplasmic aggregates of hyperphosphorylated TDP-43 accumulate and colocalize with some stress granule components, but how pathological TDP-43 aggregation is nucleated remains unknown. In Drosophila, we establish that downregulation of tankyrase, a poly(ADP-ribose) (PAR) polymerase, reduces TDP-43 accumulation in the cytoplasm and potently mitigates neurodegeneration. We establish that TDP-43 non-covalently binds to PAR via PAR-binding motifs embedded within its nuclear localization sequence. PAR binding promotes liquid-liquid phase separation of TDP-43 in vitro and is required for TDP-43 accumulation in stress granules in mammalian cells and neurons. Stress granule localization initially protects TDP-43 from disease-associated phosphorylation, but upon long-term stress, stress granules resolve, leaving behind aggregates of phosphorylated TDP-43. Finally, small-molecule inhibition of Tankyrase-1/2 in mammalian cells inhibits formation of cytoplasmic TDP-43 foci without affecting stress granule assembly. Thus, Tankyrase inhibition antagonizes TDP-43-associated pathology and neurodegeneration and could have therapeutic utility for ALS and FTD.


Subject(s)
DNA-Binding Proteins/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , COS Cells , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Cytoplasm/metabolism , Drosophila , Female , Frontotemporal Lobar Degeneration/metabolism , Male , Mammals/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley
10.
Genetics ; 201(2): 377-402, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26447127

ABSTRACT

With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Brain/metabolism , Drosophila melanogaster/genetics , Neurodegenerative Diseases/genetics , Peptides/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/growth & development , Disease Models, Animal , Humans , Mice , Neurodegenerative Diseases/pathology , Peptides/genetics
11.
J Neuropathol Exp Neurol ; 73(9): 837-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25111021

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease in which the loss of spinal cord motor neurons leads to paralysis and death within a few years of clinical disease onset. In almost all cases of ALS, transactive response DNA binding protein of 43 kDa (TDP-43) forms cytoplasmic neuronal inclusions. A second causative gene for a subset of ALS is fused in sarcoma, an RNA binding protein that also forms cytoplasmic inclusions in spinal cord motor neurons. Poly-A binding protein-1 (PABP-1) is a marker of stress granules (i.e. accumulations of proteins and RNA indicative of translational arrest in cells under stress). We report on the colocalization of PABP-1 to both TDP-43 and fused-in-sarcoma inclusions in 4 patient cohorts: ALS without a mutation, ALS with an intermediate polyglutamine repeat expansion in ATXN2, ALS with a GGGGCC hexanucleotide repeat expansion in C9orf72, and ALS with basophilic inclusion body disease. Notably, PABP-1 colocalization to TDP-43 was twice as frequent in ALS with C9orf72 expansions compared to ALS with no mutation. This study highlights PABP-1 as a protein that is important to the pathology of ALS and indicates that the proteomic profile of TDP-43 inclusions in ALS may differ depending on the causative genetic mutation.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins/metabolism , Motor Neurons/metabolism , Peptides/genetics , Poly(A)-Binding Protein I/metabolism , Proteins/genetics , Spinal Cord/pathology , Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Ataxins , C9orf72 Protein , Female , Humans , Male , Middle Aged , Mutation/genetics , Nerve Tissue Proteins/genetics , RNA-Binding Protein FUS/genetics
12.
Nat Genet ; 46(2): 152-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24336168

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset neurodegenerative disease primarily affecting motor neurons. A unifying feature of many proteins associated with ALS, including TDP-43 and ataxin-2, is that they localize to stress granules. Unexpectedly, we found that genes that modulate stress granules are strong modifiers of TDP-43 toxicity in Saccharomyces cerevisiae and Drosophila melanogaster. eIF2α phosphorylation is upregulated by TDP-43 toxicity in flies, and TDP-43 interacts with a central stress granule component, polyA-binding protein (PABP). In human ALS spinal cord neurons, PABP accumulates abnormally, suggesting that prolonged stress granule dysfunction may contribute to pathogenesis. We investigated the efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models. Treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons. These findings indicate that the dysfunction induced by prolonged stress granule formation might contribute directly to ALS and that compounds that mitigate this process may represent a novel therapeutic approach.


Subject(s)
Adenine/analogs & derivatives , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-2/metabolism , Indoles/pharmacology , Adenine/pharmacology , Analysis of Variance , Animals , Ataxins , DNA-Binding Proteins/genetics , Drosophila melanogaster , Gene Ontology , High-Throughput Screening Assays , Humans , Immunoblotting , Immunohistochemistry , Luminescent Proteins , Motor Neurons/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation/drug effects , Poly(A)-Binding Proteins/metabolism , RNA Interference , Retina/metabolism , Retina/ultrastructure , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Small Molecule Libraries , Spinal Cord/cytology , Spinal Cord/metabolism , Red Fluorescent Protein
13.
Hum Mol Genet ; 21(1): 76-84, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21949352

ABSTRACT

Spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant ataxia. The disease is caused by an expansion of a CAG-trinucelotide repeat region within the coding sequence of the ATXN3 gene, and this results in an expanded polyglutamine (polyQ) tract within the Ataxin-3 protein. The polyQ expansion leads to neuronal dysfunction and cell death. Here, we tested the ability of a number of proteins that interact with Ataxin-3 to modulate SCA3 pathogenicity using Drosophila. Of 10 candidates, we found four novel enhancers and one suppressor. The suppressor, PICK1 (Protein interacting with C kinase 1), is a transport protein that regulates the trafficking of ion channel subunits involved in calcium homeostasis to and from the plasma membrane. In line with calcium homeostasis being a potential pathway mis-regulated in SCA3, we also found that down-regulation of Nach, an acid sensing ion channel, mitigates SCA3 pathogenesis in flies. Modulation of PICK1 could be targeted in other neurodegenerative diseases, as the toxicity of SCA1 and tau was also suppressed when PICK1 was down-regulated. These findings indicate that interaction proteins may define a rich source of modifier pathways to target in disease situations.


Subject(s)
Carrier Proteins/metabolism , Drosophila/metabolism , Machado-Joseph Disease/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Animals, Genetically Modified , Ataxin-3 , Carrier Proteins/genetics , Disease Models, Animal , Drosophila/genetics , Female , Humans , Machado-Joseph Disease/enzymology , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Protein Binding , Repressor Proteins/genetics
15.
EMBO J ; 28(20): 3145-56, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19713932

ABSTRACT

Adenosine deaminases acting on RNA (ADARs) are best known for altering the coding sequences of mRNA through RNA editing, as in the GluR-B Q/R site. ADARs have also been shown to affect RNA interference (RNAi) and microRNA processing by deamination of specific adenosines to inosine. Here, we show that ADAR proteins can affect RNA processing independently of their enzymatic activity. We show that ADAR2 can modulate the processing of mir-376a2 independently of catalytic RNA editing activity. In addition, in a Drosophila assay for RNAi deaminase-inactive ADAR1 inhibits RNAi through the siRNA pathway. These results imply that ADAR1 and ADAR2 have biological functions as RNA-binding proteins that extend beyond editing per se and that even genomically encoded ADARs that are catalytically inactive may have such functions.


Subject(s)
Adenosine Deaminase/metabolism , MicroRNAs/genetics , RNA Editing/genetics , RNA, Small Interfering/genetics , Signal Transduction/physiology , Adenosine Deaminase/genetics , Animals , Blotting, Northern , Cell Line , Drosophila , Humans , RNA Interference , RNA-Binding Proteins , Signal Transduction/genetics
16.
BMC Dev Biol ; 8: 37, 2008 Apr 03.
Article in English | MEDLINE | ID: mdl-18387173

ABSTRACT

BACKGROUND: The loco gene encodes several different isoforms of a regulator of G-protein signalling. These different isoforms of LOCO are part of a pathway enabling cells to respond to external signals. LOCO is known to be required at various developmental stages including neuroblast division, glial cell formation and oogenesis. Less is known about LOCO and its involvement in male development therefore to gain further insight into the role of LOCO in development we carried out a genetic screen and analysed males with reduced fertility. RESULTS: We identified a number of lethal loco mutants and four semi-lethal lines, which generate males with reduced fertility. We have identified a fifth loco transcript and show that it is differentially expressed in developing pupae. We have characterised the expression pattern of all loco transcripts during pupal development in the adult testes, both in wild type and loco mutant strains. In addition we also show that there are various G-protein alpha subunits expressed in the testis all of which may be potential binding partners of LOCO. CONCLUSION: We propose that the male sterility in the new loco mutants result from a failure of accurate morphogenesis of the adult reproductive system during metamorphosis, we propose that this is due to a loss of expression of loco c3. Thus, we conclude that specific isoforms of loco are required for the differentiation of the male gonad and genital disc.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Nerve Tissue Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Genetic Complementation Test , Genitalia, Male/growth & development , Infertility, Male/genetics , Male , Metamorphosis, Biological/genetics , Mutation , Phenotype , Polymerase Chain Reaction , Protein Isoforms/genetics , Sequence Analysis, DNA
17.
PLoS One ; 2(9): e834, 2007 Sep 05.
Article in English | MEDLINE | ID: mdl-17786206

ABSTRACT

BACKGROUND: The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy. METHODOLOGY: We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. CONCLUSION: We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.


Subject(s)
Drosophila melanogaster/anatomy & histology , Imaging, Three-Dimensional , Animals , Microscopy, Confocal
18.
Gene Expr Patterns ; 6(8): 900-7, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16713372

ABSTRACT

There are 16 classes of unconventional myosins. Class V myosins have been shown to be involved in transporting cargo to and from the cell periphery. Class VI myosins have also been shown to transport cargo from the cell periphery, although it seems that these proteins have many roles which include the mediation of cell migration and stereocillia stabilisation. With the requirement of myosin VI for Drosophila oogenesis, the localised expression of Myosin V in the developing egg chamber and recent mounting evidence which links myosin VI to the migration of human ovarian cancer cell lines, we wanted to investigate the expression pattern of these two myosin classes in the normal mouse ovary. Here we show that these myosins are expressed, localised and regulated within the oocyte and granulosa cells of the developing mouse follicle.


Subject(s)
Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , Ovary/growth & development , Ovary/metabolism , Animals , Female , Gene Expression Regulation, Developmental , Granulosa Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Ovary/cytology , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...