Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 70(2): 347-356, 2017 08.
Article in English | MEDLINE | ID: mdl-28630209

ABSTRACT

Ca2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K+ channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K+ channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells.


Subject(s)
Aldosterone/biosynthesis , Hyperaldosteronism/metabolism , Mitochondria/physiology , Potassium Channels, Tandem Pore Domain/physiology , Zona Glomerulosa/physiology , Cells, Cultured , Humans , Membrane Potential, Mitochondrial/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...