Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Med (Lond) ; 3(1): 147, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848608

ABSTRACT

BACKGROUND: Absolute temperature measurements of tissues inside the human body are difficult to perform non-invasively. Yet, for brown adipose tissue (BAT), these measurements would enable direct monitoring of its thermogenic activity and its association with metabolic health. METHODS: Here, we report direct measurement of absolute BAT temperature in humans during cold exposure by magnetic resonance (MR) with laser polarized xenon gas. This methodology, which leverages on the sensitivity of the chemical shift of the 129Xe isotope to temperature-induced changes in fat density, is first calibrated in vitro and then tested in vivo in rodents. Finally, it is used in humans along with positron emission tomography (PET) scans with fluorine-18-fluorodeoxyglucose to detect BAT thermogenic activity during cold exposure. RESULTS: Absolute temperature measurements, obtained in rodents with an experimental error of 0.5 °C, show only a median deviation of 0.12 °C against temperature measurements made using a pre-calibrated optical temperature probe. In humans, enhanced uptake of 129Xe in BAT during cold exposure leads to background-free detection of this tissue by MR. Global measurements of supraclavicular BAT temperature, made over the course of four seconds and with an experimental error ranging from a minimum of 0.4 °C to more than 2 °C, in case of poor shimming, reveal an average BAT temperature of 38.8° ± 0.8 °C, significantly higher (p < 0.02 two-sided t test) than 37.7 °C. Hot BAT is also detected in participants with a PET scan negative for BAT. CONCLUSIONS: Non-invasive, radiation-free measurements of BAT temperature by MRI with hyperpolarized 129Xe may enable longitudinal monitoring of human BAT activity under various stimulatory conditions.


Brown adipose tissue (BAT) is a fat tissue specialized in heat production and considered a potential target for the treatment of obesity and diabetes. Detection of this tissue and its metabolic activity in adult humans is challenging as this tissue is often mixed with white fat, which makes up most of the fat in adult humans. Here we demonstrate that magnetic resonance imaging with laser-polarized xenon gas, a medical imaging technique used to assess lung ventilation function, can detect the presence of this tissue in humans and measure its temperature. These temperature measurements, which show that brown fat becomes significantly hotter than 37 °C when humans are exposed to cold, may be useful in future studies to assess the effects of drugs that aim to target BAT's heat-generating activity to regulate blood sugar level.

2.
Chemphyschem ; 23(24): e202200438, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36037034

ABSTRACT

Detection of bare gas microbubbles by magnetic resonance (MR) at low concentrations typically used in clinical contrast-ultrasound studies was recently demonstrated using hyperCEST. Despite the enhanced sensitivity achieved with hyperCEST, in vivo translation is challenging as on-resonance saturation of the gas-phase core of microbubbles consequently results in saturation of the gas-phase hyperpolarized 129 Xe within the lungs. Alternatively, microbubbles can be condensed into the liquid phase to form perfluorocarbon nanodroplets, where 129 Xe resonates at a chemical shift that is separated from the gas-phase signal in the lungs. For ultrasound applications, nanodroplets can be acoustically reverted back into their microbubble form to act as a phase-change contrast agent. Here, we show that low-boiling point perfluorocarbons, both in their liquid and gas form, generate phase-dependent hyperCEST contrast. Magnetic resonance detection of ultrasound-mediated phase transition demonstrates that these perfluorocarbons could be used as a dual-phase dual-modality MR/US contrast agent.


Subject(s)
Fluorocarbons , Contrast Media , Microbubbles , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
3.
Magn Reson Med ; 88(5): 2005-2013, 2022 11.
Article in English | MEDLINE | ID: mdl-35726363

ABSTRACT

PURPOSE: To measure dissolved-phase 129 Xe T1 values at high and low magnetic fields and the field dependence of 129 Xe depolarization by hollow fiber membranes used to infuse hyperpolarized xenon in solution. METHODS: Dissolved-phase T1 measurements were made at 11.7T and 2.1 mT by bubbling xenon in solution and by using a variable delay to allow spins to partially relax back to thermal equilibrium before probing their magnetization. At high field, relaxation values were compared to those obtained by using the small flip angle method. For depolarization studies, we probed the magnetization of the polarized gas diffusing through an exchange membrane module placed at different field strengths. RESULTS: Total loss of polarization was observed for xenon diffusing through hollow fiber membranes at low field, while significant polarization loss (>20%) was observed at magnetic fields up to 2T. Dissolved-phase 129 Xe T1 values were found consistently shorter at 2.1 mT compared to 11.7T. In addition, both O2 and Xe gas concentrations in solution were found to significantly affect dissolved-phase 129 Xe T1 values. CONCLUSION: Dissolved-phase 129 Xe measurements are feasible at low field, but to assess the feasibility of in vivo dissolved-phase imaging and spectroscopy the T1 of xenon in blood will need to be measured. Both O2 and Xe concentrations in solution are found to greatly affect  dissolved-phase 129 Xe T1 values and may explain, along with RF miscalibration, the large discrepancy in previously reported results.


Subject(s)
Xenon Isotopes , Xenon , Diffusion , Magnetic Fields , Magnetic Resonance Imaging/methods , Xenon/chemistry
4.
Magn Reson Med ; 87(3): 1480-1489, 2022 03.
Article in English | MEDLINE | ID: mdl-34601738

ABSTRACT

PURPOSE: HyperCEST contrast relies on the reduction of the solvent signal after selective saturation of the solute magnetization. The scope of this work is to outline the experimental conditions needed to obtain a reliable hyperCEST contrast in vivo, where the "solvent" signal (ie, the dissolved-phase signal) may change over time due to the increase in xenon (Xe) accumulation into tissue. METHODS: Hyperpolarized 129 Xe was delivered to mice at a constant volume and rate using a mechanical ventilator, which triggered the saturation, excitation, and acquisition of the MR signal during the exhale phase of the breath cycle-either every breath or every 2, 3, or 4 breaths. Serial Z-spectra and hyperCEST images were acquired before and after a bolus injection of cucurbit[6]uril to assess possible signal fluctuations and instabilities. RESULTS: The intensity of the dissolved-phase Xe signal was observed to first increase immediately after the beginning of the hyperpolarized gas inhalation and NMR acquisition, and then decrease before reaching a steady-state condition. Once a steady-state dissolved-phase magnetization was established, a reliable hyperCEST contrast, exceeding 40% signal reduction, was observed. CONCLUSION: A reliable hyperCEST contrast can only be obtained after establishing a steady-state dissolved phase 129 Xe magnetization. Under stable physiological conditions, a steady-state dissolved-phase Xe magnetization is only achieved after a series of Xe inhalations and RF excitations, and it requires synchronization of the breathing rate with the MR acquisition.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Animals , Magnetic Resonance Spectroscopy , Mice , Xenon
5.
Chemphyschem ; 22(12): 1219-1228, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33852753

ABSTRACT

Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129 Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129 Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.


Subject(s)
Contrast Media/chemistry , Fluorocarbons/chemistry , Microbubbles , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Xenon Isotopes/chemistry
6.
EJNMMI Res ; 10(1): 136, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33159596

ABSTRACT

BACKGROUND: Brown adipose tissue (BAT) is a fat tissue found in most mammals that helps regulate energy balance and core body temperature through a sympathetic process known as non-shivering thermogenesis. BAT activity is commonly detected and quantified in [18F]FDG positron emission tomography/computed tomography (PET/CT) scans, and radiotracer uptake in BAT during adrenergic stimulation is often used as a surrogate measure for identifying thermogenic activity in the tissue. BAT thermogenesis is believed to be contingent upon the expression of the protein UCP1, but conflicting results have been reported in the literature concerning [18F]FDG uptake within BAT of mice with and without UCP1. Differences in animal handling techniques such as feeding status, type of anesthetic, type of BAT stimulation, and estrogen levels were identified as possible confounding variables for [18F]FDG uptake. In this study, we aimed to assess differences in BAT [18F]FDG uptake between wild-type and UCP1-knockout mice using a protocol that minimizes possible variations in BAT stimulation caused by different stress responses to mouse handling. RESULTS: [18F]FDG PET/CT scans were run on mice that were anesthetized with pentobarbital after stimulation of non-shivering thermogenesis by norepinephrine. While in wild-type mice [18F]FDG uptake in BAT increased significantly with norepinephrine stimulation of BAT, there was no consistent change in [18F]FDG uptake in BAT of mice lacking UCP1. CONCLUSIONS: [18F]FDG uptake within adrenergically stimulated BAT of wild-type and UCP1-knockout mice can significantly vary such that an [18F]FDG uptake threshold cannot be used to differentiate wild-type from UCP1-knockout mice. However, while an increase in BAT [18F]FDG uptake during adrenergic stimulation is consistently observed in wild-type mice, in UCP1-knockout mice [18F]FDG uptake in BAT seems to be independent of ß3-adrenergic stimulation of non-shivering thermogenesis.

7.
Sci Rep ; 9(1): 14865, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619741

ABSTRACT

Brown adipose tissue (BAT) is a type of fat specialized in non-shivering thermogenesis. While non-shivering thermogenesis is mediated primarily by uncoupling protein 1 (UCP1), the development of the UCP1 knockout mouse has enabled the study of possible UCP1-independent non-shivering thermogenic mechanisms, whose existence has been shown so far only indirectly in white adipose tissue and still continues to be a matter of debate in BAT. In this study, by using magnetic resonance thermometry with hyperpolarized xenon, we produce the first direct evidence of UCP1-independent BAT thermogenesis in knockout mice. We found that, following adrenergic stimulation, the BAT temperature of knockout mice increases more and faster than rectal temperature. While with this study we cannot exclude or separate the physiological effect of norepinephrine on core body temperature, the fast increase of iBAT temperature seems to suggest the existence of a possible UCP1-independent thermogenic mechanism responsible for this temperature increase.


Subject(s)
Adipose Tissue, Brown/metabolism , Magnetic Resonance Spectroscopy/methods , Thermogenesis/genetics , Thermometry/methods , Uncoupling Protein 1/genetics , Adipose Tissue, Brown/drug effects , Adrenergic alpha-Agonists/pharmacology , Animals , Female , Gene Expression , Male , Mice , Mice, Knockout , Norepinephrine/pharmacology , Thermogenesis/drug effects , Thermometry/instrumentation , Uncoupling Protein 1/deficiency , Xenon
SELECTION OF CITATIONS
SEARCH DETAIL
...